分子輝線から銀河を理解するための "分子雲"の星間化学

西村 優里 東京大学 / 国立天文台

2019年度 第49回 天文・天体物理若手 夏の学校 / 2019年7月31日 / ロワジールホテル豊橋 1

About Me

- 西村 優里(にしむら ゆり)
- March 2017: PhD in physics (Supervisor: Prof. Yamamoto)
 @ Dept. of Physics, The University of Tokyo (Hongo)
- April 2017~: Postdoc (ALMA Research Fellow, Prof. Kohno)
 @ Institute of Astronomy, The University of Tokyo (Mitaka)
- Recent research interests:
 - Molecular cloud properties and star formation in nearby galaxies
 - Molecular and atomic lines in high-redshift galaxies
 - ISM cycle / metallicity evolution of galaxies
 - AGNs / starbursts / (U)LIRGs / the Galactic Center
 - Astrochemistry in general

Astrochemistry Line Diagnostics — HCN/HCO⁺? Line Survey toward a Spiral Arm of M51 Large Magellanic Cloud IC10, NGC6822 Molecular-Cloud-Scale Chemistry **W3(OH)** Bridge the Gap Take Home Messages $+\alpha$

Astrochemistry

Chemical Evolution

Two different concepts according to the context

- Enrichment of heavy elements or metals by stellar nucleosynthesis and supernovae
- Evolution of molecular composition along star formation processes

Astrochemistry: Evolution of Molecular Composition

Systematic change of major form of carbon: ionized carbon [CII] atomic carbon [C]] carbon monoxide CO Unsaturated organic molecules (carbon chain) Nitrogen-bearing species

Suzuki et al. 1992

Astrochemistry: Dependency on Physical Environments

Astrochemistry: Now Applied to External Galaxies

Aladro et al. 2015

Line Diagnostics — HCN/HCO⁺ ?

HCN/HCO⁺: As a Diagnostic Tool of (Obscured) AGN ?

HCN/HCO⁺: Still Being Debated...

Line Survey toward a Spiral Arm of M51

M51: Not Only Centers But Also Spiral Arm

M51: CH₃OH Tells Something

CH₃OH Tells Something: Merger VV114

Saito et al. 2017

Low-Metallicity Dwarf Galaxies: LMC, IC10, NGC6822

Effect of Low-Metallicity on Molecular-cloud Chemical Composition

Dwarf Galaxies as a low-metallicity laboratory

- Majority of the Local Group
- Local approach to study galaxies in the early Universe

Elemental abundances

Nitrogen is significantly less abundant in dwarf galaxies.

Galaxy	Z/Z_{\odot}	$O/H \times 10^4$	C/H × 10 ⁴	N/H × 10 ⁵	S/H × 10 ⁵
LMC	1/3 – 1/2	2.40	0.79	0.87	1.02
IC10	1/5 – 1/3	1.58	1 0.46	0.63	x <u>1</u> 0.75
NGC6822	1/5 – 1/3	1.35	³ 0.68	0.52	10 0.41
Milky Way	1	7.41	4.47	9.12	1.70
M51	~ 1	6.31	3.98	15.85	1.59

LMC & MW: Dufour et al. 1982, M51: Bresolin et al. 2004, Garnett et al. 2004, IC10: Magrini et al. 2009, Bolatto et al. 2000, Lequeux et al. 1979, NGC6822: Esteban et al. 2014

Target galaxy: The Large Magellanic Cloud

Quiescent clouds

CO Peak 1NQC2

Star-forming clouds with HII region

N113N159W

Star-forming clouds

N79N44C

■ N11B

• 7 clouds

- 450 hours
- Mopra 22 m
- HPBW = 38"
 ~ 10 pc

Spitzer/MIPS, Herschel-PACS, Herschel-SPIRE

Similar spectral pattern

Similar spectral pattern

Resemblance of 7 clouds

Resemblance of 7 clouds

Correlation coefficients of integrated intensity among 7 clouds

$$c = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2 (y_i - \bar{y})^2}}$$

 x_i, y_i : integrated intensities
 \bar{x}, \bar{y} : average of x_i, y_i

i : source #1-7

	CCH	HCN	HCO ⁺	HNC	CS	SO	¹³ CO
ССН	1.000						
HCN	0.974	1.000		high co	orrelatio	n	
HCO ⁺	0.937	0.908	1.000				
HNC	0.901	0.912	0.928	1.000			
CS	0.862	0.845	0.925	0.963	1.000		
SO	0.895	0.870	0.948	0.983	0.985	1.000	
¹³ CO	0.555	0.549	0.691	0.824	0.812	0.845	1.000

Another target galaxy: IC10

Spitzer MIPS [24 µm], IRAC [8.0, 3.6 µm]

Lebouteiller et al. 2012

We selected the **CO-brightest** cloud as a target.

- CO 1-0
 Leroy et al. 2006
- CO 2-1 & 3-2
 - Petitpas & Wilson 1998
 - 1 GMC
 - 55 hours
 - NRO 45 m
 - HPBW = 17"
 ~ 80 pc

Again similar spectral pattern

The other target galaxy: NGC6822

GALEX FUV image

CO (2-1) intensity map

Gratier et al. 2010

- The brightest HII region: Hubble V
- CO 2-1 & 3-2 multiline analysis by Petitpas & Wilson 1998

- 29 hours
- IRAM 30 m
- HPBW = 23"
 ~ 56 pc

And again similar spectral pattern in NGC6822

Metal-poor IC10/LMC and Metal-rich M51

Features of chemical composition of low-metallicity **dwarf galaxies**

Direct impact: Nitrogen-bearing species

Abundance ratio	NGC6822	IC10	LMC		Milky Way	M51
N/O	0.039	0.04	0.036	<	0.12	0.25
HCN/HCO ⁺	1.2	2.5	3.4	<	8.0	8.4
HNC/HCO ⁺	< 0.3	0.4	0.8	<	3.4	1.6

IC10: Nishimura et al. 2016, ApJ, 829, 94, LMC: Nishimura et al. 2016, ApJ, 818, 161 MW: Turner et al. 1995a, 1995b, 1996, 1997, M51: Watanabe et al. 2014

Elemental abundances

Direct impact: Nitrogen-bearing species

Elemental abundances

impact chemical compositions

Direct impact: Nitrogen-bearing species

Elemental abundances

impact chemical compositions

Metal-poor IC10/LMC and Metal-rich M51

Not due to the difference of elemental abundances!

Abundance ratio	NGC6822	IC10	LMC	Milky Way	M51
C/O	0.5	0.3	0.33	< 0.60	0.6
CCH/HCO ⁺	16.7	17.5	13.9	> 5.3	9.1

IC10: Nishimura et al. 2016, ApJ, 829, 94, LMC: Nishimura et al. 2016, ApJ, 818, 161 MW: Turner et al. 1995a, 1995b, 1996, 1997, M51: Watanabe et al. 2014

Lower abundance of dust grains higher temperature decrease CH₃OH

Lower abundance of dust grains

Characteristic features in low-metallicity galaxies

ALCHEMI

ALMA large program (2017.1.00161.L) targeting at NGC253 The ALMA Comprehensive High-resolution Extragalactic Molecular Inventory

Molecular-Cloud-Scale Chemistry

Galactic star-forming regions

IRAS16293-2422: Caux et al. 2011, L1527: Tokudome et al. 2013 / Yoshida et al. 2018 NGC2264 & Orion KL: Watanabe et al. 2015

"Molecular Cloud Scale"

Attainable spatial resolution for nearby galaxies = a few 10–100 pc

Galactic vs. Extragalactic

resolution corresponds to...

Extragalactic

Galactic

W3 *D* ~ 2 kpc 0.3 pc

M83 *D* ~ 4.5 Mpc 6.75 pc

Orion *D* ~ 412 pc 0.06 pc

LMC *D* ~ 50 kpc 0.075 pc

L1527 *D* ~ 140 pc 0.02 pc

W3(OH) Observations in the 3 mm band

W3(OH):

active star-forming region in the Perseus arm

- NRO 45 m
- March 2015
- 3 mm (TZ/SAM45)
- On-The-Fly mode
- 16' × 16' (9 pc × 9 pc) area
- 20 hours in total

Nishimura et al. 2017

Results

W3(OH) hot core (0.2 pc resolution) / averaged over 9.0 pc × 9.0 pc area

Classification of **5 sub-regions** according to ¹³CO intensity

Correlation between integrated intensity of ¹³CO: 3 mm

x-axis: integrated intensity of ¹³CO y-axis: integrated intensity of a given molecule

Different knee point!

Correlation between integrated intensity of **HCO⁺**

x-axis: integrated intensity of HCO⁺ y-axis: integrated intensity of a given molecule

Fractional flux from each sub-region: 3 mm

Contribution from the cloud peripheries is not small or dominant!

Higher-J transitions: 0.8 mm observations with JCMT

R band image / CO 3-2

Are the higher-J transitions spatially more closely correlated with dense star-forming gas?

- JCMT 15 m telescope
- February -- December 2018
- On-The-Fly mapping mode
- Same region as the 3 mm band
 16' × 16' (9 pc × 9 pc) area
- 20 hours in total

Integrated intensity map: 0.8 mm

Distribution of the higher-*J* transition lines are generally more compact than that of lower-*J* transition lines.

HCO⁺ (4-3) CCH(N = 4 - 3)HCN (4-3) CH₃OH (1₁ - 0₀ A⁺) 8 $HCO^{+}(4-3)$ CCH (N=4-3) HCN (4-3) CH₃OH (11–00) 4 4 4 4 Δδ (arcsec) Δδ (arcsec) Δδ (arcsec) Δδ (arcsec) 0 0 0 0 -4 -4 -4 -4 -8 -8 -8 -8 -8 0 -8 0 -8 0 4 -8 -4 4 -4 4 -4 -4 0 4 8 $\Delta \alpha$ (arcsec) $\Delta \alpha$ (arcsec) $\Delta \alpha$ (arcsec) $\Delta \alpha$ (arcsec) 12CO (3-2) HNC (4 - 3) CS (7-6) SO (88 - 77) 8 8 8 ٥ 12**CO** HNC (4-3) CS (7-6) SO (87-77) 4 4 4 4 Δδ (arcsec) Δδ (arcsec) Δδ (arcsec) Δδ (arcsec) \bigcirc 0 0 0 0 -4 -4 -4 -4 -8 -8 -8 -8 -8 -8 -4 -4 0 -8 8 -8 -4 0 -4 $\Delta \alpha$ (arcsec) $\Delta \alpha$ (arcsec) $\Delta \alpha$ (arcsec) $\Delta \alpha$ (arcsec) 55

Contour levels: (20%, 40%, 60%, 80%, 100%) of peak intensity

Correlation between integrated intensity of ¹³CO: 0.8 mm

x-axis: integrated intensity of ¹³CO (1–0) y-axis: integrated intensity of a given molecule

Fractional flux from each sub-region: 0.8 mm

¹²CO (3-2)

HNC (4–3)

SO (87–77)

Summary 2

- We have conducted multi-line imaging toward a Galactic molecular cloud W3(OH) in the 3 mm & 0.8 mm band.
- For the lower-J transition lines in the 3 mm band, it is indicated that the gas in diffuse or translucent regime actually contributes to a larger fraction of the total line emission from the 9.0 pc square region.
- In contrast to the lower-J transition lines in the 3 mm band, the higher-J transition lines in the 0.8 mm band trace almost exclusively high density, except for the 12CO (3-2) line.
- In multi-transition analysis of "high density tracers", the difference of the emitting regions between low-J and high-J transitions should be taken into account.

Bridge the Gap between Galactic and Extragalactic

Bridge the Gap between Galactic and Extragalactic

Volume

Emission

Mass Emissivity

7

- Measuring the gas density by multi-transition analysis
 - Watanabe et al. 2014
 - Nishimura et al. 2019
- Making large-scale maps of Galactic molecular clouds
 - Nishimura et al. 2017 W3(OH) Nishimura et al. in prep.
 - Watanabe et al. 2017 W51
 - Pety et al. 2017 Orion B
 - Kauffmann et al. 2017 Orion A
 - Yoshimura et al. in prep. W41

61

Line Mapping of Galactic Molecular Clouds

To Constrain Physical Properties

Chemical modeling Harada et al. 2019

To Probe Density Distribution

Application for **Observations**

Nishimura et al. 2019

Harada-like approach

Conducted non-LTE analysis using **RADEX** to reproduce observed intensity of **H**₂**CO** and **CS**

Leroy-like approach

and More Observations

Take Home Messages

Take Home Messages

キャリア:就職

■ いろんな自己実現の方法あり

■ 科学に携わる職業はアカデミックだけではない

キャリア:ポスドク

■ 何を大事に職を選ぶか自分の基準を考えておく: Duty workの質・量 / 勤務地 / アドバイザー・メンター

■ いろんなグループのいろんなやり方を見るのは勉強になる

■ 他人の研究をリスペクトする、コラボレーターを大切に

Take Home Messages

研究

- 研究しながら勉強する(勉強は永遠に終わらない)
- 自分の研究の軸を大切に持っておく
- オリジナリティは大事、でもタコツボ化しないように!
 "Big Question"と繋がっていることはもっと大事
- 「両足をいっぺんに浮かせると転ぶ」
 片足は持ちネタ、もう片足は新しいチャレンジ、くらいのバランス
- うまくいかなかった経験は肥やしになるので、簡単に腐らない
- (特に書くとき)構成、言葉づかい、図表をよく吟味する

Special thanks to...

Yuri Aikawa Nanase Harada Akiko Kawamura Kotaro Kohno Nami Sakai Takashi Shimonishi Satoshi Yamamoto Yoshimasa Watanabe