超新星残骸の観測から迫る 超新星の親星

勝田 哲 (かつださとる) 埼玉大学・理工研・宇宙観測センター・助教

2019/7/30

天体物理若手の会

• 超新星爆発

- 歴史的超新星
- 超新星爆発のメカニズム
- 超新星の親星
- 超新星残骸
 - 基本構造
 - 超新星残骸の(X線)観測から親星を探る

2019/7/30

超新星爆発とは

- 重い恒星が一生の最期に 起こす大爆発
- 明るさは太陽の数億倍
 →銀河一つに匹敵する

肉眼で見えた超新星:日本の記録

西暦1181 1054 1006 皇松天皇元手秋七月甲寅客星入月 丁万人大日に見な 客屋を東風得ますね二十四 在降見云方 成院自顧ナルショの日子百丁内の時客里 いて金三四日守住金日 町を近去いする月に後ち月、 「見い三年 藤原定家(1162-1241) 月二日天雨云 三年三月元日 三日しせ、大時客号見 うそうえち 客星: 大大声ス 普段見慣れない星 いあって見 (彗星や超新星) 日ちってわれ

明月記 (公益財団法人 冷泉家 時雨亭文庫 蔵) ※藤原定家の19歳から75歳まで56年間にわたる日記

史上最大光度の超新星「SN 1006」

- ・中国:夜でも地上のものがはっきり見えた
 5日の月→-8.5等
- •エジプト:¼の月より少し明るい
- シリア: 月のよう
- イラク: 月のよう
- イエメン:水面がギラギラ輝いて太陽のよう
- スイス: 目が眩むよう

(参考)金星:-4.6等、満月:-12.6等、太陽:-30等

ルネサンス期のヨーロッパの記録

肉眼で見えた超新星一覧

2019/7/30

超新星のタイプ

重力崩壊型およびIa型超新星諸元

	重力崩壊型(II <i>,</i> Ib <i>,</i> Ic etc.)	Ia型
親星	重い星(M>8M _®)	白色矮星
エネルギー源	重力 (鉄コアの位置エネルギー)	核融合 (主に C+O → Ni)
爆発エネルギー	10 ⁵³ erg 1% (10 ⁵¹ erg)が運動エネルギー (99% はニュートリノ)	10 ⁵¹ erg
爆発後に残るもの	中性子星かブラックホール ※連星系を成す場合は伴星が残る。	跡形もなく吹き飛ぶ。 ※連星系を成す場合は伴星が 残る。

重力崩壊型超新星爆発の原理

超新星爆発までの時間

t=-0.2秒

t=0 (爆発!) t=数百年

(or BH)が残る。

大質量星の終末期

He \rightarrow C, O C \rightarrow Ne, Mg O \rightarrow Si, S Si, S \rightarrow Fe

la型超新星爆発の原理

Seitenzahl et al. (2013)

チャンドラセカール限界質量 M~1.38 M_●の重さになった時

超新星の母銀河

古い星のみ

我々の銀河での超新星発生頻度

- 頻度: 1 個 / 40 ± 10 年
- 重力崩壊型: 85%
- Ia 型: 15% (Tammann et al. 1994)

 最大級の渦巻き銀河の場合、10年で1個の超新星が 発生する。

CBAT: http://www.cbat.eps.harvard.edu/lists/Supernovae.html TNS: https://wis-tns.weizmann.ac.il

昔は数百年に一度の大イベントだったが、今や日常茶飯事。

理論的には、

- ・重力崩壊型: 重い星(M > 8 M_☉)
- la 型: 白色矮星

親星を観測的に解明したい。

親星の質量の違いが多様なサブタイプの主因か?

SN	Progenitor Star ^a	M _{ZAMS} (M _☉) ^b		
II-P	RSG	8–20		
II-L	RSG/YSG	20–30 (?)		
II-pec	BSG (b)	15-25		
Пр	YSG (b)	10–25		
Ib	He star (b)	15-25 (?)		
Ic	He star (b)/WR	25-?		
Ic-BL	He star (b)/WR	25-?		
IIn (SL)	LBV	30-?		
IIn	LBV/B[e] (b)	25-?		
IIn	RSG/YHG	25-40		
IIn-P	Super-AGB	8–10		
Ibn	WR/LBV	40-?		
Ia/IIn	WD (b)	5-8 (?)		

Smith (2014)

A) Single degenerate (WD + MS or RG)

安定した質量降着(新星爆発して はいけない) → WD がチャンドラ セカール質量(~1.4 M_☉)に達した とき爆発する。 B) Double degenerate (WD + WD)

WD 連星が、重力波を放出し徐々に接近 → くっついてチャンドラセカール質 量を超えれば爆発する。

親星の直接観測の難しさ

近傍銀河 NGC 2906 @ 30 Mpc で発生した超新星 SN 2005ip

爆発する前

爆発した後

Fox et al. (2009)

近傍銀河と言えども距離が遠い(~10 Mpc)ため、親星が見つかるケースは極めて稀。 →銀河系内(~10 kpc)の超新星残骸の観測から親星に迫れないか?

• 超新星爆発

- 歴史的超新星
- 超新星爆発のメカニズム
- 超新星の親星
- 超新星残骸
 - 基本構造
 - 超新星残骸の(X線)観測から親星を探る

現在の姿(超新星残骸)

爆発噴出物(ejecta)と星周・星間物質(CSM/ISM)が光る。

•爆発噴出物

Fesen et al. (2006)

星周物質 ← 親星の星風(外層)

WR 124 (Wolf-Rayet star)

- X線観測すると大体いつも検出できる。
 →元素組成比から親星の質量を推定。

X線スペクトル→元素組成比

G292.0+1.8 – Chandra X-ray image

Suzaku/XIS X-ray spectrum

Kamitsukasa et al. (2014)

元素組成比 vs. 元素合成モデル

→ 元素組成比を最もよく再現するのは M~30-35 M_●

古い残骸でも爆発噴出物を検出可能

過去の測定結果をまとめてみると...

銀 河

系内

文献値のまとめ

SNR	Age (years)	M _{ZAMS} (M _☉)	
*** Galactic SNRs ***			
Cassiopeia A	~340 (1)	15-20 (2)	
Kes 73	~750 (4)	20-30 (5)	
G350.1-0.3	~900 (6)	15-25 (7)	
RX J1713.7-3946	~1600 (8)	≲15 (9)	
MSH 15-52	~1700 (10)	N.A.	
G292.2-0.5	~1900 (12)	25-30 (13)	
RCW103	~2000 (14)	18-20 (15)	
G349.7+0.2	~2800 (16)	35-40 (7)	
G292.0+1.8	~3000 (17)	30-35 (18)	
Puppis A	~4500	15-25 (19)	
Kes 79	4400-6700 (21)	30-40 (22)	
Cygnus Loop	~10000 (23)	S15 (24)	
Sgr A East	~10000 (26)	13-20 (26,27)	
MSH 15-56	~11000 (29)	N.A.	
IC443	3000-30000 (31,32)	~25 (33)	
G290.1-0.8	10000-20000 (35)	20-25 (36)	
3C391	~19000 (37)	~15 (38)	
W44	20000 (39)	8-15 (40)	
G284.3-1.8	~21000 (42)	>25 (43)	
G156.2+5.7	20000-30000 (44)	≲15 (45)	
3C400.2	~100000 (47)	N.A.	
3C396	~3000 (49)	13-15 (49)	
G15.9+0.2	2000-6000 (50)	20-25 (50)	
Kes 17	2000-40000 (51)	25-30 (52)	
CTB109	~14000 (53)	30-40 (54)	
GI 16.9+0.2 (CTB1)	~16000 (55)	13-15 (56)	
G296.1-0.5	~28000 (57) 25-30 (57)		
W51C	~30000 (58)	≳20 (59)	
*** LMC SNRs ***			
N132D	~2500 (60)	~50 (61)	
N63A	2000-5000 (63)	N.A.	
N23	~4000 (65)	N.A.	
N49	~4800 (67)	N.A.	
N49B	~10000 (63)	>25 (68,69)	
B0453-68.5	12000-15000 (70)	N.A.	
30 Dor C	4000-20000 (71)	N.A.	
Honeycomb	N.A.	N.A.	
*** SMC SNRs ***			
1E0102.2-7219	~2050 (72)	25-35 (73)	
IKT2	NA	23-33 (73) N A	
DEM \$32	NA	N.A.	
IKT6	~14000 (76)	13-15 (77)	
IKT23	~18000 (79)	~18(79) -	

組成比と元素合成モデルの比較から沢山の超新 星残骸の親星の質量が見積もられてきた。そこ で、これらの結果をまとめてみた↓

f (M<15M _☉)	f (15–22.5M _©)	f(M>22.5M _©)			
0.27	0.27	0.46			
重い星の方が多い! そんな例は他にない。					
→本当なのか?					

Katsuda, Takiwaki, Tominaga, Moriya, Nakamura, ApJ (2018), 863, 127

大マゼラン雲

小マゼラン雲 天文・天体物理若手の会

X/Si vs. CO core mass (Sukhbold+2016)

Black: ZAMS = 9.0--28 M_☉; Red: ZAMS = 60 M_☉; Green: ZAMS = 120 M_☉

→ 実は、X/Si は親星質量 (CO core mass)に鈍感...

Fe/Si vs. CO core mass (Sukhbold+2016)

天文・天体物理若手の会

Fe/Siを基に親星質量を更新

				CO core	ZAMS
SNR	Age (years)	M _{ZAMS} (M _o)	(Fe/Si)/(Fe/Si)⊙	Revised M_{COcore} (M_{\odot})	Revised $M_{ZAMS} (M_{\odot})^n$
*** Galactic SNRs ***					
Cassiopeia A	~340 (1)	15-20 (2)	1.0 ± 0.1 (3)	<3	<15
Kes 73	~750 (4)	20-30 (5)	0.8 ± 0.3 (5)	<3	<15 ^{m1}
G350.1-0.3	~900 (6)	15-25 (7)	0.35 ± 0.05 (7)	3-6	15-22.5 ml
RX J1713.7-3946	~1600 (8)	≲15 (9)	<0.03 (9)	>6	>22.5
MSH 15-52	~1700 (10)	N.A.	0.78 ± 0.09 (11)	<3	<15
G292.2-0.5	~1900 (12)	25-30 (13)	0.59 ^{+0.62} _{-0.48} (13)	<3	<15 ^{m1,m2}
RCW103	~2000 (14)	18-20 (15)	1.33 ^{+0.27} _{-0.14} (15)	<3	<15
G349.7+0.2	~2800 (16)	35-40 (7)	0.56 ^{+0.09} _{-0.10} (7)	<3	<15 ⁿ¹
G292.0+1.8	~3000 (17)	30-35 (18)	0.55 ± 0.24 (18)	<3	<15 ^{m1,m2}
Puppis A	~4500	15-25 (19)	0.63 ± 0.05 (20)	<3	<15
Kes 79	4400-6700 (21)	30-40 (22)	0.35 ^{+0.04} _{-0.05} (22)	3-6	15-22.5 ^{nl}
Cygnus Loop	~10000 (23)	≲15 (24)	0.7 ± 0.1 (25)	<3	<15
Sgr A East	~10000 (26)	13-20 (26,27)	0.26+0.12 (28)	3-6	15-22.5 ml,m2
MSH 15-56	~11000 (29)	N.A.	0.37 ± 0.11 (30)	3-6	15-22.5 ml
IC443	3000-30000 (31,32)	~25 (33)	0.25 ± 0.10 (34)	3-6	15-22.5 ml.m2
G290.1-0.8	10000-20000 (35)	20-25 (36)	0.11 ± 0.06 (36)	>6	>22.5
3C391	~19000 (37)	~15 (38)	<0.06 (38)	>6	>22.5
W44	20000 (39)	8-15 (40)	0.03 ± 0.01 (41)	>6	>22.5 ^{m2}
G284.3-1.8	~21000 (42)	>25 (43)	0.59+1.59 (43)	<3	<15 ^{m1,m2}
G156.2+5.7	20000-30000 (44)	≲15 (45)	0.37 ± 0.1 (45,46)	3-6	15-22.5 ^{nl}
3C400.2	~100000 (47)	N.A.	5.3 <u>+</u> 3+] (48)	<3	<15
3C396	~3000 (49)	13-15 (49)	N.A.	N.A.	N.A.
G15.9+0.2	2000-6000 (50)	20-25 (50)	N.A.	N.A.	N.A.
Kes 17	2000-40000 (51)	25-30 (52)	N.A.	N.A.	N.A.
CTB109	~14000 (53)	30-40 (54)	N.A.	N.A.	N.A.
G116.9+0.2 (CTB1)	~16000 (55)	13-15 (56)	N.A.	N.A.	N.A.
G296.1-0.5	~28000 (57)	25-30 (57)	N.A.	N.A.	N.A.
W51C	~30000 (58)	≳20 (59)	N.A.	N.A.	N.A.
*** LMC SNRs ***					
N132D	~2500 (60)	~50 (61)	0.48+0.13 (62)	<3	<15 ^{m1}
N63A	2000-5000 (63)	N.A.	0.87 ± 0.13 (64)	<3	<15
N23	~4000 (65)	N.A.	0.38 ± 0.13 (66)	3-6	15-22.5 ^{nl}
N49	~4800 (67)	N.A.	0.18 ± 0.01 (66)	>6	>22.5 ^{m2}
N49B	~10000 (63)	>25 (68,69)	1.03 ± 0.07 (66)	<3	<15
B0453-68.5	12000-15000 (70)	N.A.	0.42+816 (64)	3-6	15-22.5 ml,m2
30 Dor C	4000-20000 (71)	N.A.	$0.08^{+0.20}_{-0.06}$ (71)	>6	>22.5 ^{m2}
Honeycomb	N.A.	N.A.	$0.17\pm0.13_{0.10}$ (64)	>6	>22.5 ^{m2}
*** SMC SNRs ***					
IE0102.2-7219	~2050 (72)	25-35 (73)	0.63 ^{+0.26} _{-0.20} (74)	<3	<15 ^{m1}
IKT2	N.A.	N.A.	0.32 ± 0.24 (75)	3-6	15-22.5 ml,m2
DEM \$32	N.A.	N.A.	0.28 ± 0.26 (75)	3-6	15-22.5 ml,m2
IKT6 2010	/7/20 ~14000 (76)	13-15 (77)	0.26±船停(78) 🚃 🕁	• 天保物理学	€
IKT23 2019,	/ / / 5 U ~18000 (79)	~18 (79)	0.48+0.14 (78)	一八附加生白	「 ^{ノノ」」} <15 ^{m1,m2}

M_{COcore} → M_{ZAMS} 変換 15 CO core mass (M_{sun}) G 01

M _{COcore} (M⊚)	M _{zams} (M _O)	Fraction (%)
< 3	< 15	47
3 – 6	15 – 22.5	32
> 6	> 22.5	21

- 星周物質が検出できる場合は珍しい。
 - la 型で検出された場合、single degenerate の証拠。

Cas A 超新星残骸中の準静止輝点

Quasi-stationary flocculi (QSFs)

Line intensities of QSFs and some models

	Obs Inter Au	ERVED NSITIES: = 4.3	RAYMOND MODEL L	RAYMOND MODEL 7:	Observed Intensities:	RAYMOND MODEL A
Line	1Q1	2Q4	$v_s = 60 \text{ km s}^{-1}$	$v_s = 60 \text{ km s}^{-1}$	1Q1	$v_s = 50 \text{ km s}^{-1}$
β λ4861	100	< 180	100	100	100	100
π λ4959	< 62	< 137	11.7	11.4	< 58	1.36
π λ5007	50	< 120	34.6	33.9	46	4.03
π λ5159	30	< 90			26	
τ λ5198]			(2.98	2 011	20	3.66
ι λ5200	32	< 84	12.98	1 33	27	3.99
π λ5527	20	< 52	(2.50	1.55)	14	0100
π λ5755	109	64	3.18	4 16	70	7.73
ετ λ5876	62	88	5 93	5 43	37	9.84
ι λ6300	170	< 26	22.5	48.6	84	22.2
τ λ6364	56	< 26	7.25	15.7	27	7.15
Π λ6548	559	676	46.5	56	254	78
α λ6562	676	676	509	505	300	317
Π λ6583	1710	2030	140	168	760	233
e I λ6678	10	< 26	1.7	1.5	4	2.8
α λ6716	12	< 26	48.2	27.5	5	90.6
Π λ6731	32	< 26	36.0	43.3	13	66.2
e I λ7065	10	< 33	0.48	0.44	4	0.79
μ λ7155	25	< 35	5.10	5.11	9	
апλ7291		< 37	1.72	2.54		3.12
π λ7320-30]			(15.4	36.5		(41.6
апλ7324 }·····	62	< 37	1.14	1.70	21	2.08

\rightarrow N & He rich

(Kirshner & Chevalier 1977; Chevalier & Kirshner 1978)

V <~ 500 km/s (Kamper & van den Bergh 1976)

運動速度と[NII]/Hα比がWR nebula NGC 6888に一致。 →親星はWR であろう (Kirshner & Chevalier 1977)。

Cas A: FMFs

Fast-moving flocculi (FMFs) v ~ 5000 km/s

Similar abundance pattern to QSFs

He1?

6000

WAVELENGTH (Å)

5500

爆発時、親星表面に N- and He-rich ガスが存在した証拠。 → 親星は late WN star (WN7—WN9), not WC nor WO であろう。

7000

- [N II]

[NII]

6500

G292.0+1.8: 星周物質リング?

Bhalerao et al. (2019)

2019/7/30

G292.0+1.8: 周辺ガスの密度構造

→親星質量: 13 M_☉ < M < 30 M_☉

ケプラーの超新星: Type la with CSM

Optical & IR observations

高い密度 (n ~ 100 cm⁻³) N-rich (N/H ~ 4 times solar) knots (e.g., Blair et al. 1991; 2007; Williams et al. 2012)

X-Ray Evidence for Diffuse N-rich CSM

- ・ 超新星爆発は重力崩壊型と Ia型の2通りある。
- 近年の観測技術の進歩により、今や日常的に検出されている。
- ところが、親星はいまだによく分かっていない。
 超新星残骸が親星の手がかりを与えてくれる。
- 爆発噴出物の Si/Fe 組成比は親星質量の良い指標になりうる。親星の質量分布は標準的な
 Salpeter IMFに一致する。
- 星周物質も親星推定に役立つ。