

Career Development Project for Researchers of Allied Universities

名古屋大学

超新星残骸における 宇宙線研究の到達点と展望: 電波天文学の立場から

佐野 栄俊(名古屋大学 高等研究院)

© NSF/J.Yang

本講演のエッセンス

超新星残骸における宇宙線加速の理解には、 星間ガス(分子+原子)の精査が本質的

■ <u>陽子起源ガンマ線の特定</u>

□ 星間ガスは、陽子起源ガンマ線の発生の標的粒子
 → 星間ガスの精密定量 (Fukui+12,13,17; Fukuda+14; HS+18a)

■ <u>衝撃波と非一様星間ガスの衝突</u>

□ ガス塊周辺での乱流・磁場増幅が、X線増光や粒子加速に効く (HS+10,13,15,17a,b; HS16; Inoue+09, 12)

■ <u>次世代ガンマ線望遠鏡 (CTA) に向けて</u>

 より遠く、視直径の小さな天体へ(系内/マゼラン雲など)
 宇宙線加速やガス加熱の本質に迫る (HS+15,17c,18b; Kuriki+17; Yamane+18)

宇宙線の起源を探る(一次宇宙線と二次宇宙線)

宇宙線の起源を探る

PCR = 1 eV cm⁻³
■ 宇宙の主要構成要素として、星間空<u>間に多大な影響を与える</u>

Draine 11

宇宙線の起源を探る

PCR = 1 eV cm⁻³ ■ 宇宙の主要構成要素として、星間空間に多大な影響を与える

Draine 11

Heiles (1976) all

宇宙線のエネルギー分布と起源

超新星爆発と超新星残骸 (SNR)

An explosion that occurs during the death of massive star or white dwarf(s)
 The shock waves is as fast as 3,000 km s⁻¹, which accelerates cosmic-rays

衝撃波統計加速 (Diffusive Shock Acceleration; DSA)

9

衝擊波統計加速 (Diffusive Shock Acceleration; DSA) 10

Rankine-Hugnoiot equation $\rho_1 v_1 = \rho_2 v_2$ (Mass conservation) Shock front upstream

 $P_1 +
ho_1 v_1^2 = P_2 +
ho_2 v_2^2$ (Momentum conservation) $\rho_1 v_1 \left(\frac{v_1^2}{2} + \frac{P_1}{\rho_1} + u_1 \right) = \rho_2 v_2 \left(\frac{v_2^2}{2} + \frac{P_2}{\rho_2} + u_2 \right),$ (Energy conservation) downstream $heta_{ ext{out}}$

衝撃波統計加速 (Diffusive Shock Acceleration; DSA) 11

1往復あたりの energy gain ΔE

$$\Delta E = \frac{v_1 - v_2}{c} \left(\cos \theta_{\rm in} - \cos \theta_{\rm out} \right) E.$$

1往復あたりの averaged energy gain <ΔE>

upstream

 $v_{1}, \rho_{1}, P_{1}, T_{1}$

n往復あたりの averaged energy gain En

$$E_n = E_0 \left(1 + \frac{4(v_1 - v_2)}{3c} \right)^n$$

n往復あたりの escape probability P_{escape}

衝撃波統計加速 (Diffusive Shock Acceleration; DSA) 12

Energy spectrum of accelerated particles *dN/dE*

$$\frac{dN}{dE} \propto E^{-\frac{3v_2}{v_1 - v_2} - 1} = E^{-\alpha},$$

Strong shock → a = 2.0 地球近傍での観測結果 → a = 2.7 (energy 高い方から拡散するので無矛盾)

Maximum energy of accelerated particles E_{max}

$$E_{\rm max} \sim 100 \times \eta^{-1} Z_{\rm e} \left(\frac{v_{\rm s}}{5000 \,\mathrm{km \, s^{-1}}}\right) \left(\frac{B}{10 \,\mu\mathrm{G}}\right) \left(\frac{R}{10 \,\mathrm{pc}}\right) \mathrm{TeV}.$$

 $\eta = (B / \delta B)^2$ (磁場乱流度の指標、 $\eta = 1$ が最も乱流度が高い) Z_e: charge of accelerated particle

例えば、宇宙線陽子の場合 衝撃波統計加速 DSA では、少なくとも ~100 TeV まで加速される

完全電離した鉄原子核 (Fe⁺²⁶) の場合は、~3 PeV 程度まで加速可 (~ knee energy)

Injection rate of cosmic-rays L_{CR}

$$L_{\rm CR} = \frac{V \,\varepsilon_{\rm CR}}{\tau_{\rm esc}} \sim 10^{41} \,\, {\rm erg \ s^{-1}},$$

V: 銀河円盤の体積 (= $\pi R^2 h \sim 4 \times 10^{66}$ cm³, 半径 $R \sim 15$ kpc, 厚さ $h \sim 200$ pc) ε_{CR} : 宇宙線のエネルギー密度 (= 1.39 eV cm⁻³ = 2.2 × 10⁻¹² erg cm⁻³) τ_{esc} : escape time scale (~ 3 × 10⁶ yr, e.g., Gabich 2013)

Total power of supernova explosion P_{SNR}

$$P_{\rm SNR} = \frac{E_{\rm SN}}{f_{\rm SN}} \sim 10^{42} \,\,{\rm erg}\,\,{\rm s}^{-1},$$

E_{SN}: 典型的な超新星爆発のエネルギー (~ 10⁵¹ erg) f_{SN}: 超新星爆発の頻度 (= 30 年に1回)

従って、各超新星爆発の運動エネルギーの~10%が宇宙線に変換されれば良さそう

宇宙線の直接観測では、到来方向や加速現場はわからない 14

宇宙線から放射されるエックス線・ガンマ線

陽子起源ガンマ線を観測的に証明できれば、 超新星残骸での宇宙線加速を捉えたことになる ■ 陽子起源ガンマ線の場合、~100 MeV のスペクトルに折れ曲り

銀河宇宙線の最高エネルギーを担う、年齢2000年の SNRs 17

星間ガスとの比較が鍵を握る

星間ガスとの比較が鍵を握る

宇宙線陽子

星間ガス (星間陽子) π F: ガンマ線フラックス W_p: 陽子の全エネルギー n: 星間ガス密度 $F \propto \frac{W_p n}{d^2}$ d: SNRまでの距離 最新の RX J1713.7-3946 のガンマ線分布 ガンマ線フラックス → ガス分布と比較できる時代が来た!! ∝ 星間ガスの密度分布

20

■ ガス層中では、イオン、原子、分子の形態で存在
 ■ 大量の水素、若干のヘリウムほかから構成される

超新星残骸では、水素原子・分子ガスが重要

分子雲 (molecular cloud)

可視光で見たオリオン座

電波(一酸化炭素分子)で見たオリオン座

分子雲 = 星を作る元

分子雲 (molecular cloud)

分子雲

□ 主成分は水素分子ガス (H2) □ H2 は ~10 K では励起されない

□ 分子雲のトレーサーとして、
 一酸化炭素分子 (CO) を使う
 □ H2: CO ~ 10000:1
 □ ~ 5 K で励起 (J = 1-0)

電波(一酸化炭素分子)で見たオリオン座

波尼 2.6 mm line emission

23

補足:分光観測と視線速度

原子ガス (atomic gas)

可視光で見た銀河 NGC 5457

原子ガス

□ 主成分は水素原子(H_i)
 □ 銀河系の腕構造に沿って分布
 □ HI 21cm 輝線で観測
 □ ガスの分布/質量/密度/速度等

ガンマ線と分子雲分布の不一致(Aharonian+06)

26

低温・高密度の原子雲の発見(Fukui+12)

低温・高密度の原子雲の発見(Fukui+12)

陽子起源ガンマ線の特定 (Fukui+12)

29

Interstellar gas in Vela Jr. (Fukui+17, ApJ, 850, 71) 31

RCW 86: 陽子/電子起源ガンマ線が混在 (HS+18)

0

-90

90

32

0.0

180

宇宙線陽子の全エネルギー

$$W_{\rm pp}^{\rm tot} \sim t_{{\rm pp} \to \pi_0} \times L_{\gamma}$$

 $t_{{\rm pp} \to \pi_0} \sim 4.5 \times 10^{15} \ (n/1 \ {\rm cm}^{-3})^{-1} \ {\rm s}$

conventional expectations of $W_{\rm pp}$ ~10⁵⁰ erg (~10 %)

	Fukui+12	HS+18a	Fukui+17	Fukuda+14	HS+ in prep.
	RXJ1713	RCW86	Vela Jr.	HESSJ1731	HESSJ1912
Age (yr)	1600	1800	2400	4000	> 2300
Distance (kpc)	1	2.5	0.75	5.2	2.1
Radius (pc)	8.2	7.5	5.9	11	18
Atomic mass (10 ⁴ M_{\odot})	1.1	2.0	2.5	1.3	4.2
Molecular mass (10 ⁴ M_{\odot})	0.9		0.1	5.1	1.8
Total gas mass ($10^4 M_{\odot}$)	2.0	2.0	2.6	6.4	6.0
Gas density (cm ⁻³)	130	75	100	60	130
<i>W</i> _{pp} (10 ⁴⁸ erg)	0.4	1.2	0.7	7	1.4
SNR Type	CC	Type la	CC?	CC	CC?

■ W_{pp}~10⁴⁸⁻⁴⁹ erg は安全な下限値を与える

超新星残骸 RX J1713.7-3946

Fukui+03, PASJ, 55, 61

シンクロトロンX線で暗い

□ Age: ~1,600 yr
□ Distance: ~1 kpc
□ Size: ~19 pc
□ Core-collapse SNR

シンクロトロンX線で明るい

画像:シンクロトロンX線(ローサットX線天文衛星)

なんてん電波望遠鏡

超新星残骸 RX J1713.7-3946

Fukui+03, PASJ, 55, 61

3 pc

画像:シンクロトロンX線(ローサットX線天文衛星) 等高線:分子雲(なんてん電波望遠鏡)

0

36

NANTEN2ミリ波・サブミリ波電波望遠鏡

<u>場所</u> 南米チリ北部 アタカマ高地 (~4,865 m) 国際共同研究(主導:名古屋大学) 日本(2),ドイツ(2),オーストラリア(~10),チリ(1),韓国(1),スイス(1) 観測周波数 115 GHz: CO J=1-0 ($\Delta\theta \sim 2.6'$) 230 GHz: CO *J*=2-1 (Δθ~1.3') 460 GHz: CO *J*=4–3 (Δθ~38") $CI^{3}P_{1}-^{3}P_{0}$ 810 GHz: CO *J*=7–6, 8–7 Cl ${}^{3}P_{2} - {}^{3}P_{1}$ ($\Delta \theta \sim 22''$)

2014/10 at NANTEN2 site (HS)

17/26

超新星残骸 RX J1713.7-3946

Fukui+03, PASJ, 55, 61

3 pc

画像:シンクロトロンX線(ローサットX線天文衛星) 等高線:分子雲(なんてん電波望遠鏡)

38

超新星残骸 RX J1713.7-3/46

Fukui+03, PASJ, 55, 61 HS+10, ApJ, 724, 59 HS+13, ApJ, 778, 59

Э

<u> 画像:シンクロトロンX線(すざくX線天文衛星)</u> 等高線:分子雲(NANTEN2電波望遠鏡)

00

О

00

1 pc

超新星残骸 RX J1713.7-346

40

рс

Fukui+03, PASJ, 55, 61 HS+10, ApJ, 724, 59 HS+13, ApJ, 778, 59 HS+15, ApJ, 799, 175

Э

画像:シンクロトロンX線の冪指数 Γ (小さい冪指数 → 電子の最大エネルギー大)

非一様なガス密度分布の形成(模式図)

衝撃波-中性星間ガスの相互作用(模式図)

衝撃波-中性星間ガスの相互作用(3D MHD 計算, Inoue+12)

衝撃波-中性星間ガスの相互作用(3D MHD 計算, Inoue+12)

■ 分子雲周辺で磁場が最大 1 mG 程度まで増幅 → 分子雲周辺でのシンクロトロンX線の増光とコンシステント → 乱流増幅が、分子雲方向で宇宙線電子の最大エネルギーを高めた

強磁場環境の観測例 (Uchiyama et al. 2007)

45

Uchiyama+07

Image: Chandra X-ray Contours: TeV γ-ray

□ Cooling time scale $t_{\text{synch}} \sim 1.5 (B/1 \text{ mG})^{-1.5} (\varepsilon/1 \text{ keV})^{-0.5} \text{ yr}$ □ Acceleration time scale $t_{\text{acc}} \sim 1\eta (\varepsilon/1 \text{ keV})^{-0.5} (B/1 \text{ mG})^{-1.5} (V_{\text{sh}}/3000 \text{ kms}^{-1})^{-2} \text{ yr}$

We need a strong magnetic field at least ~ 1 mG in the small spots!

これまでのまとめ

<u>星間物質の精査+エックス・ガンマ線との比較が本質的</u>

水素原子ガス 密度: 1-100 cm⁻³, 温度: -243 - 4700度

Cherenkov Telescope Array (CTA)

- 次世代ガンマ線チェレンコフ望遠鏡(今年稼働開始、2021-22年に本格運用開始)
- 角度分解能が 0.6-1.5分角程度まで向上(従来は4分角程度)
- 感度が約10倍向上 →より暗い天体も見えてくる

Current VHE gamma-ray map (HESS Col.+17)

VHE gamma-ray map using CTA (simulated)

CTA 時代に向けて(1): 擬似観測

RXJ1713 からのガンマ線が、CTA を用いるとどう見えるか、数値計算を行った
 電子起源と陽子起源ガンマ線で、空間分布がはっきりと異なるはず…!!
 →世界でまだ一例のみ。今後、多くの天体についてシミュレーションしておく必要

CTA時代に向けて(2):宇宙線電子の知見を深める

■ 銀河系& マゼラン雲の超新星残骸サーベイ

→ 付随ガスの特定 & シンクロトロンX線・電波との比較研究

■ <u>ほぼ Face on 銀河</u>

□ 銀河系内天体に比べて視線方向への物質の重なりが少なく、 付随する星間ガスの特定が容易

<u>距離~50 kpc</u>

□ 物理量の推定が容易 & 均一なサンプルを得ることができる

Image: ALMA CO 1-0 (Δθ~3") Contours: *Chandra* X-rays (0.3-7 keV)

HS+18, submitted to ApJ

IPBW

SNR N103B

CTA時代に向けて(2):宇宙線電子の知見を深める

CTA 時代に向けて(3): 衝撃波-星間ガス相互作用の理解 59

本講演のまとめ

超新星残骸における宇宙線加速の理解には、 星間ガス(分子+原子)の精査が本質的

■ <u>陽子起源ガンマ線の特定</u>

□ 星間ガスは、陽子起源ガンマ線の発生の標的粒子
 → 星間ガスの精密定量 (Fukui+12,13,17; Fukuda+14; HS+18a)

■ <u>衝撃波と非一様星間ガスの衝突</u>

□ ガス塊周辺での乱流・磁場増幅が、X線増光や粒子加速に効く (HS+10,13,15,17a,b; HS16; Inoue+09, 12)

■ <u>次世代ガンマ線望遠鏡 (CTA) に向けて</u>

 □ より遠く、視直径の小さな天体へ(系内/マゼラン雲など)
 □ 宇宙線加速やガス加熱の本質に迫る (HS+15,17c,18b; Kuriki+17; Yamane+18)