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How does a Secular Instability Grow in a Hyperaccretion Flow?
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Abstract

Hyperaccretion flows are the most plausible model for the central engine of gamma-ray bursts. These

have an N-shaped equilibrium curve on the Σ-Ṁ plane (with Σ and Ṁ being surface density and mass

accretion rate, respectively). The accretion flow on the lower Σ branch of the N-shape is advection-

dominated accretion flow (ADAF) while that on the upper one is neutrino-dominated accretion flow

(NDAF). The middle branch has a negative slope on the Σ-Ṁ plane, meaning that the flow on this

branch is secularly unstable. To investigate how the instability affects the flow structure and what

observable signatures are produced, we investigate the time evolution of unstable hyperaccretion flows

by solving the height-averaged equations for viscous accretion flows. As the results, we can see that

the region where neutrino emission is effecient as the mass injection rate increases. We also confirm

that the non-steady flow can create a kind of disturbance and that it propagates over the whole disk

when a transition to NDAF regime occurs at some region. However, the non-steady mass flow is not

strong enough to induce coherent transition over the whole disk, unless the mass injection rate varies

with time. When the injection rate continuously changes, the accretion rate varies intermittently. This

give implications for the observational features of gamma-ray bursts.

1 Introduction

GRBs are the brightest explosions in the universe

which release energy up to≳ 1051 ergs in the form of

gamma-rays within a few seconds. These explosions

are considered to be produced in ultrarelativistic

jets. The mechanizm why the jets are produced

and what causes the fluctuations of the luminos-

ity in a very short time scale are still in a mystery.

In the most promising model of the GRB central

engine what is called “hyperaccretion”, such jets

would be launched from a massive accretion disk

around a central black hole whose mass accretion

rate is ∼ 0.01−1M⊙ sec−1. In such a disk, neutrino

cooling is efficient instead of advection cooling. In

2013, Kawanaka et al. discovered an important fea-

ture of a hyperaccretion flow. It is that the thermal

equilibrium curve shows like a character “N” on the

Σ-Ṁ plane in the innermost region. The N-curve

has a negative slope. The negative slope represents

the secular instability in the accretion disk.

We little understand about the disk instabilities

of the central engine of GRBs. Therefore, we inves-

tigate the time evolution of a hyperaccretion flow

and we set that our purpose is to understand why

the luminosity fluctuates in 10−3 − 10−1 sec.

We can see from the time-dependent results that

the luminosity evolution occurs intermittently and

the negative slope on the Σ-Ṁ plane causes a kind

of disturbance and that it propagates in the whole

disk.

2 Methods of Calculations

2.1 Basic Equations for Viscous Dif-

fusion

In the present study, we solve the basic equations

for viscous diffusion of an axisymmetric accretion

disk:
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図 1: The simplified curve used in the present study.
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Here, Σ(r) ≡
∫
ρ(r, z)dz is the surface density, r

is the distance from the center of a black hole,

Ṁ ≡ −2πrΣvr is the mass accretion rate (with

vr being the radial velocity), ν is the kinematic

viscosity, and Ω is the angular velocity. Equation

(1) describes mass conservation, while equation (2)

represents angular momentum conservation. In our

calculations, we approximate equation (2) with the

pseudo-Newtonian force for a Kerr black hole.

Considering the balance of the gravitational force

and the centrifugal force, we find the angular veloc-

ity. Substituting Ω in equation (2), we get equation

(3).
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We next transform equations (1) and (3) to non-

dimensional forms. For this purpose we introduce

dimensionless variables:

x ≡
√
r/rout, (4)

xH ≡
√
rH/rout, (5)

σ ≡ Σ/Σ0, (6)

τ ≡ t/t0, (7)

ṁ ≡ Ṁ/Ṁ0, (8)

µ = νΣ/Ṁ0. (9)

Here, rout is the size of the disk, Σ0, Ṁ0 are arbi-

trary constants, and t0 (≡ rout
2Σ0/Ṁ0) is the vis-

cous timescale.

2.2 N-shaped Equilibrium Curve

To solve the non-demensional basic equations, we

need to prescribe the functional form of µ(σ). This

is usually done by using the thermal equilibrium

curve, on which the heating rate is equal to the

cooling rate. We model this equilibrium curve cal-

culated by Kawanaka et al. 2013b in a simplified

form as is shown in figure 1. Here, the lower branch

represents the ADAF regime and the upper branch

represents the NDAF regime.

2.3 Simplified Energy Equation

As long as the system is in a thermal equilibrium,

it evolves along the equilibrium curve. It starts to

deviate from the curve, however, once an instability

takes place in the disk. In order to describe the

evolution, we introduce the following form of energy

equation:

∂µ

∂τ
= −µ− µeq

τth
(10)

where µeq is the value of µ on the thermal equi-

librium curve for a given σ, and τth represents the

thermal timescale;

τth = f · τvis with τvis =
r2

ν
=

r2out
ν0

x4σ

µ
(11)



2015年度 第 45回 天文・天体物理若手夏の学校

Here, τvis represents the diffusion timescale, and is

a function of r, and f is a constant. In this calcu-

lation, we fix f to be f = 0.1.

2.4 Boundary Conditions and Initial

Conditions

There are two boundary conditions. One is the

choise of ṁinj the mass accretion rate at the outer

edge of the disk (the outer boundary condition) and

the other is the zero torque condition at the inner

edge of the disk (the inner boundary condition). In

this study, we examine the following case for the

way of mass injection from the outer boundary:

ṁinj = ṁ0e
τ
10 with ṁ0 = 3π × 8.60 (12)

The initial condition is a steady disk correspond-

ing to ṁ0. Here, we set rin is 3.84Rg. In equation

(3), in order to make rin barely below 3.84Rg, we

set β ∼ 1.12, and rH = 0.9rg.

3 Results

3.1 Basic Consideration Based on a

Steady Model

How does a transition from the lower branch to

the upper branch proceed in the disk with an N-

shaped equilibrium curve, when the mass injection

rate gradually increases? To answer to this ques-

tion, we first show in Figure 2 the estimate of the

grobal σ evolution. We, here, assume that the disk

is initially on the lower branch of the N-shaped

curve. As ṁinj increases, ṁ at each radius grad-

ually increases, so does the value of σ. Eventually

a transition from the lower ADAF branch to the

upper NDAF branch takes place when σ > σA. We

can see in Figure 2 that the surface density rapidly

increases at the radius where an upward transition

occurs. After the transition, neutrino cooling is ef-

ficient. Hence, neutrino is emitted from the regions

with high σ values.
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図 2: The surface-density (σ) distributions based on

the steady model for various mass injection rates of

ṁinj = ṁ0 exp(τ) with τ = 0.0, 0.3, · · · , and 3.0,

respectively
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図 3: The same as Figure 2 but based on the time-

dependent calculations.

3.2 Surface-Density Evolution

Figure 3 displays the global evolution of the sur-

face density distribution. The expansion of the

high-σ region, where neutrino cooling is efficient is

clear in this figure. The upward transition to the

upper (NDAF) branch is indicated by a rapid in-

crease of σ.

Let us next examine to what extent the steady

model depicted in Figure 2 reproduces the time

dependent calculations shown in Figure 3. In the
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図 4: Propagation of the ṁ variation wave due to

the instability over the disk plane. The elapsed

times are 0.334, 0.337, 0.340, · · · , and 0.355.

steady model, the mass accretion rate (ṁ) is ev-

erywhere the same; in other words, the whole disk

can immediately respond to a change of ṁinj at

the outer boundary. Another big assumption is

that a transition from one branch to another at

a certain radius does not affect its environment.

Comparing these two panels, we notice that the

time of an upward transition at a certain radius

in the time-dependent model is delayed, compared

with that at the same radius in the steady model.

This is obviously the effect of the finite accretion

timescale. We also find that the σ profile shows

fluctuating patterns. This is because of mass ex-

changes between the neighboring regions associated

with branch transitions. Hereafter we call such fluc-

tuations as ’non-steady’ effects.

There is another interesting feature unique to un-

stable accretion disks; the influence of rapid varia-

tions in ṁ propagates from rign in the radial direc-

tion, as is depicted in Figure 4.

4 Discussion

In this study, we examine the time evolution

of a disk, which has N-shaped thermal equilib-

rium curves, by means of simple numerical simu-

lations. We solve time-dependent, height-averaged

basic equations for viscous disks receiving with vari-

able mass injection to see how the transition be-

tween the lower and upper branches occurs, how it

propagates over a disk plane, and what differences

arise from the cases without N-shaped equilibrium

curves.

One of the most important issues in the present

study is the observability of the instability. For this

purpose we calculate the mass accretion rate at in-

ner edge. We can see significant variability in the

mass accretion rate. This may be related to the

short-term variation of the Blandford-Znajek jet lu-

minosity since it is proportional to the magnetic

energy density on the event horizon and is, hence,

likely to be proportional to the mass accretion rate.

5 Conclusion

What we find can be summarized in our study

as follows: (1) When the mass injection rate in-

creases with time, the region initially on the lower

branch successively undergoes upward transitions.

(2) Non-steady mass flow, the mass flow deviated

from nearly spatially averaged flow, arises in a nar-

row region around the ignition radius rign during a

transition. Resultant ṁ variation wave propagates

over the whole disk. (3) The transition between the

lower and upper branches yields abrupt changes in

the accretion rate. Maybe, this can explain that the

short-term variations of GRBs.
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