

Hyper Suprime-Cam

- HSCの紹介
- 要素技術
 - <u>高感度CCDと読み出し回路</u>
 - 大型光学系の製作
 - <u>高結像性能を実現する機械系</u>
- 将来計画

すばる望遠鏡の焦点

焦点距離 16400 mm 口径比 F/2

M] 8.2 m

Hyper Suprime-Cam

モザイクCCDカメラ

	Suprime-Cam	HSC
Field of View	0.5 deg	1.5 deg
No. of CCDs	10	116
Inst. Img Qlty	0".33	0".35
First Light	1999	(2012)

HSC Pan-STARRS

Aperture [m]	8.2	1.8
Survey Speed	91	13.4
Inst. Img Qlty	0".35	~ 0″.6
First Light	(2012)	2009
Lead Country	JP	US

DES	LSST
4.0	6.5(eq)
37	329
~ 0″.6	?
(2012)	(2019)
US	US

PFU

HSC

Camera

NAOJ

高感度CCDと読み出し回路

本物の CCDの 構造

本物の CCDの 構造

実はこのままでは動かない

電荷の転送

3相使うと転送できる

Channel Stop

縦方向はゲート電圧で障壁が作られる

channel stopのpotentialはとても高い

カラーCCD(補足)

- 天体観測では汎用性を確保するため、CCDにフィルターを直接取り 付けることはしない。
- 外部にフィルターを置く

CCDの駆動回路のエッセンス

アナログスイッチで定電圧+-を切り替える

CCDの出力

CCDの読み出し回路

noise op-ampが出来てから設計が楽になった

読み出しノイズ

.

読み出しノイズの低減

フィルターをかける CDSがフィルターとして働いている

読み出しノイズ

積分時間を長くし ていくとノイズは 低減するが、底打 ちする(I/f)

eで計測するノイズ の大きさはアンプ のResponsivityでほ ぼ決まる

(Capacitanceの逆数)

QUANTUM EFFICIENCY OF CCD IMAGERS

- 量子効率低下の理由
 - 短波長側
 - ポリシリコンでの吸収
 - 裏面照射型CCD
 - 界面準位で光電子がトラップされてしまう
 - Backside charging
 - 長波長側
 - エネルギーが低すぎてe-hを作れない
 - 空乏層が薄くて、光子が透過してしまう
Backside Charging

界面準位によるト ラップをイオン打 ち込み等で矯正す ること。

Si内の光の吸収長

完全空乏型CCD

空乏層厚は不純物濃度のsqrt に反比例 高純度のSiはn型の方が得や すい

substrateにn--を採用し、 buried p channel構造にすると 空乏層を広げることができ る

signal carrierが正孔になる

Charge Transfer Efficiency: CTE

CTEが悪化すると

- 画像がsmearする
- 宇宙望遠鏡では、放射線ダメージにより次第
 にCTEが悪化していく
- weak lensingを利用したサイエンスにはインパ クトが大きい
- 素子上で一様に悪化しないと、解析による補 正は難しい(今後の研究課題)

CTEの計測

X線の吸収I e-h / 3.6 eV全ての電荷はだいたい5.9 keV-> 1620 eI pixel内に収まる

cf: 可視光の吸収 I photon -> I e-h pair

CTEの計測

場所(転送回数)

single event (I pixelだけに電荷が 収まっている)を探してきて、そ の場所とpixel値(電子の個数)を プロットする

X線エネルギースペクトル

完全空乏型CCD

可視光及びX線とCCD

	可視光	X 線
電子正孔対の個数	Ⅰ光子Ⅰ個	3.6 eV当たりI個
空乏層が厚いと止 まる光子は?	低エネルギー	高エネルギー
素子による分光	不可	可

完全空乏型CCD

完全空乏型CCD

第7回DECIGOワークショップ 2009.4.23

<u>Nano-JASMINEの概要</u>

衛星の仕様

衛星外形	50×50×50cm	
質量	約25kg	
打ち上げ	2010(予定)	
ミッション期間	引 2年	
観測等級	z<8mag	
観測波長	z-band(λ~900nm)	

Nano-JASMINEの想像図

先に宇宙に 行くのは Nano-JASMINE

開発体制

- ミッション部(望遠鏡など)→国立天文台&京都大学
- バス部(無線器、姿勢制御、電源など)→東京大学&東京海洋大学

radiation toleranceが高い

宇宙線

地表で観測される宇宙線はほとん
どミューオン
Siを「まっすぐ」突き抜けて、そのトラックにそって電離e-h pair
が残る
I個/cm^2/min

"cosmic ray"と称して見ているイ ベントのほとんどは、ガンマ線が compton散乱した電子か(か、検 出器近くで発生したベータ線)

電子がSi中で多重散乱を受けて、 トラックにそってe-h pairができ る。「くねくね」

地球

U-Th系列の放射性同位元素

視野を広げる・モザイクCCDカメラ

多くのCCDを並べる(mosaic CCD)

NAOJ-UT Mosaic for Kiso Schmidt Sekiguchi et al. 1992 8 x 8 (1 cm² CCD) CCD:TITC215 World largest forcal plane in 1992 Suprime-Cam Miyazaki et al. 2002 5 x 2 x (3cm 6cm CCD) MIT/LL CCID20 World fastest discovery speed 2002

UH8K Camera (1995)

UH IfA Gerry Luppino First 2k4k CCDs adopted Designed by CfA Built at Loral (foundry)

Suprime-Cam

Hyper Suprime-Cam

HSC

HSC 真空冷却デュワー

暗電流を下げるためにCCD は冷却しなければならない

Filter

i'- filter : Barr

HSCフィルター交換機構

HSC シャッター

HSCカメラ部の組み上げ

HSC

HSC

大型補正光学系の製作

- すばるはリッチー・クレチアン (RC)で主鏡は 双曲面
- (生の) 主焦点には球面・コマ・非点・像面
 湾曲の全ての収差が出る(軸上ですら)
- 補正光学系が必要

- Wynne Triplet (1968)
- Kitt Peak 4 m望遠鏡用 (F/2.8)
- 全て球面 UBK7ガラス
- 結像性能 0''.5 (phi=30') 1''.0 (phi=1 deg) 400-500nm

- Wynne Triplet + Lateral Shift ADC
- 様々な光学硝子
- 非球面レンズ
- 結像性能 < 0''.18 (phi=30'):400 1000 nm

Lateral Shift ADC (Takeshi 2000)

• Atmospheric Dispersion Corrector

EL = 90 EL < 90

現行

HSC

大型非球面レンズの製造

- 研削 -> 球面研磨 -> 非球面研磨
- NCで数cm角の研磨子を制御

• 接触式を採用

光学的方法では検査が困難な、 凸非球面を採用できる

New WFC G1

HSC補正レンズ

Wide Field Corrector

Measured Performance 0".18 FWHM in R Delivered in May

HSC補正レンズ

高い結像性能を実現する機械系

シャープな像を実現する

- 結像性能の劣化要因
 - 主鏡形状の変化
 - 鏡筒のたわみによる光軸ズレ、アオリ

検出してアクチュエーターで直す

すばるの場合、仰角の関数として Lookup tableを作っておけばよい

シャック・ハルトマンセンサー

Hexapod(6本のアクチュ エータ)を使用する

数トンの荷重を**I~2** µmの精度で制御する 技術を要する

光学機器間の位置ズレ

HSC望遠鏡インターフェース

Jack

Jack Top Frame

HSC 組み上げ ・ 試験

HSC 組み上げ ・ 試験

WFC-Dewar 相対傾き < 10" (30 µm) EL=90->0

Hyper Suprime-Cam

<u>ハワイにおける立ち上げスケジュール</u>

2011年10月 望遠鏡搭載試験 2011年11月 カメラをハワイに出荷 2012年1月 試験観測開始

Hyper Suprime-Camで観る宇宙

すばる ミューロン210 M51

NGC 253 (B,V,Ic合成)

ハッブル宇宙望遠鏡 (全視野)

Suprime-Cam (視野の1/100)

HST 'wide-I' continuum

ハッブル宇宙望遠鏡 (全視野) NB816 narrowband

Suprime-Cam (視野の1/100)

ほとんどが数十億

光年以遠の銀河

空の明るさと暗い銀河

空の明るさが明るい場合

空の明るさがゼロの場合

HSC

4	1	1	Z	7
		イ	F	
┻		J	Г	5

71#-9 л 0.2		N	視力検査表		3m用							
	0.2	С	U	С	0	視力I.0の人が分解						
	0.3	0	O	С	С	(20 取小の円反						
	0.4	С	0	O	Э	↑ 40~50個						
	0.5	Э	O	0	С							
	0.6	O	Э	С	0							
	0.7	0	o	С	с	 ← 1 分角 → 						
	0.8	о	0	С	o							
	0.9	o	Э	0	С	十切浩碚で中中を組ると						
	1.0	с	0	о	o	人主述或し十田を睨ると						
	1.2	о	o	0	с	銀河がたくさん写る						
	1.5	o	0	c	0							

宇宙は有限の大きさ だから、あるところ で数の伸びが減る 宇宙全体の構造を調べ る手段の一つだった

銀河の明るさや個数が時間ととも に変化することが分かり、銀河数 えは宇宙構造を調べる手法として は使われなくなった

HSCで観る宇宙

遠方銀河がたくさん見えます

銀河研究者は、この中から生まれたて の銀河を探したり、銀河のより集まり 具合の変化を観察して楽しみます。

(銀河研究者:銀河がどのように生ま れて、成長するかに興味がある人々)

銀河研究者は多い

月日	会場	9	10	11		12	1	3	1	4 1	15	16	5 17	,	18	19
9月21日 (火)										記者会見						
	А				L	. 太 陽	系	-		+ ² 7 4	(Q. 星	間			
	В]		Γ	Ν	. 恒	星				I	N. 恒	星			
	С			Ī	Х	. 銀河形)	戎]	X. 銀 i	可形成			
9月22日	D			西山	J.	高密度	星 星 (昼作	昼休み			J. 高 领	. 高密度星		天文教育	
(水)	Е			文刊	P	・星・惑		(理事会)	ホスター		P. 星·	. 星·惑 星		(E 会場)		
	F			Γ	K	. 超新星爆	発					K. 超新星爆発				
	G			Γ	Y	Y. 教 育・他					· ·	√. 地 上 観				
	Н			Γ	N	7. 飛翔	観				· ·	W. 飛	翔 観			
	A		Q	星 間]			Q S. R	Q	. 星	間					
	В	X. 銵	S. 🗄	银 河 核			昼 休 (評議員		S	. 銀 河	核	総				
	С		X. 銀河开	≶成 /R. 銀	河	ポスター			. 銀	河	会					
9月23日	D	受付	J. F	高密度 星	ļ				J.	高 密 度	星	出度	総 会 (E 会場)		懇親会	
(木)	Е	X II	P. /	星・惑 星					P.	星・惑	星	者				
	F		M. ;	太 陽	1 Ĵ				М	. 太	陽	確				
	G		V. ±	也上韻	Į				V	. 地 上	観	認				
	Н		W.	飛翔観	Į				N	7.飛翔	観					
	А		T. 🕯	银 河 団			昼休	休 み								
	В		U. 4	宇宙 諸	Ì				U	. 宇宙	論					
	С		R. 🕯	退 氾	Ĵ				R	. 銀	河					
9月24日	D	受付	J. 류	高密度 星	ļ	ポスター			J.	高 密 度	星					
(金)	Е	又的	P. ½	星・惑 星	Į											
	F		M. 2	太陽	1 Ĵ				M	. 太	陽					
	G		V. ±	也上韻	Į				V	. 地 上	観					
	Н		W.	飛翔嶺	Į											
9月25日 (土)										公開講演会	•					
		9	10	11		12	1	3	1	4	15	16	6 17	,	18	19

Dark Sectors of the Universe

2010年10月特別公開日

物

18.91

実

HSSC?

High Speed Suprime-Cam

- Suprime-Camの機構部(PFU)再利用 (FOV 30')
- i' band だけで観測 (weak lensing)
- 0.1 arcsec/pix
- 10% luckily good imageを使用するとSeeingが
 0.6秒角から0.3秒角に改善
- 15 Hz necessary
- isoplanatic patch ~ 1 arcmin
- Field coverage ~ 50 % of 30' FOV

- 国内メーカーとの共同開発 (C社)
- 7.5 um pixel (0.1秒角 @ Subaru PF)
- Column ADC (~ 4000 ch)
- 読み出しノイズ <~ 2 e @ 15 Frame/sec
- 空乏層を厚くすること (50 micron以上) と裏面照 射化は将来のオプション

Simulation

Merit of better Seeing

Number of faint galaxies used for weak lensing analysis

Conclusion

SC HSC HSSC 2002 2012 2012