Mutli-field Open Inflation and the Effect of Interaction

京都大学 基礎物理学研究所 D1 杉村 和幸

- Motivations
- Multi-field open inflation
 - Scenario
 - Formulation and Model
 - Quantum tunneling
 - Evolution after tunneling
- Interaction effect on decay rate
- Conclusions and Discussions

Motivations

Slow-roll inflation and beyond

- □ Slow-roll inflation is satisfactory
 - Solution of
 - Horizon problem
 - Flatness problem
 - Monopole problem
 - Prediction of power spectrum

http://lambda.gsfc.nasa.gov

very good agreement!!

- □ Slow-roll inflation is unsatisfactory
 - How is it implemented in particle physics?
 - How does it start?

String landscape

- String theory can implement a setting for slow-roll inflation
 - scalar field

flat potential

High dimensionality

many physical degrees of freedom

- String theory implies
 - multi-field
 - quantum tunneling

We will study inflation with multi-scalar field and quantum tunneling

Non-trivial structure of vacuum

Multi-field open inflation

Scenario

$$\begin{array}{ll} \alpha = 0.1 & \beta = 0.01 \\ \sigma_0 = 2m_{pl} & m_\phi = 10^{-6}m_{pl} \\ M_V = 0.2m_{pl} & \phi_0 = 15m_{pl} \end{array}$$

$$m_{pl}^2 = \frac{1}{8\pi G}$$

- 1. rolling to false vacuum
- 2. false vacuum inflation
- 3. quantum tunneling
- 4. slow-roll inflation
- 5. reheating

$$V(\sigma, \phi) = V_{\text{tun}}(\sigma) + V_{\text{infl}}(\sigma, \phi)$$

$$V_{\text{tun}}(\sigma) = \alpha \sigma^2 \left\{ (\sigma - \sigma_0)^2 + M_V^2 \right\}$$

$$V_{\text{infl}}(\sigma, \phi) = \frac{1}{2} m_\phi^2 \phi^2 + \frac{\beta}{2} \sigma^2 (\phi - \phi_0)^2$$

Review of CDL instanton

(tunneling = 1st order transition = bubble nucleation)

Single scalar field tunneling with gravity

Coleman-De Luccia instanton(1980)

under O(4)-symmetry

- Euclidean metric $ds_E^2 = dt^2 + a^2(t) \left(d\chi^2 + \sin^2\chi d\Omega^2\right)$
- Euclidean action $S_E[\sigma,a]=2\pi^2\int dt a^3\left[\frac{1}{2}\dot{\sigma}^2+V(\sigma)-\frac{3}{m_{pl}^2}\left(\frac{\dot{a}^2}{a^2}+\frac{1}{a^2}\right)\right]$

non-trivial classical path

instanton
$$\bar{\sigma}(t), \bar{a}(t)$$

- decay rate $\frac{\text{(tuuneling probability)}}{\text{(unit volume)(unit time)}} = O(V(\sigma)) \times \exp(-S_E[\bar{\sigma}, \bar{a}] + S_E[\sigma_F, a_F])$

instanton

trivial path at false vacuum

- evolution inside bubble
 - metric $ds^2 = -dt^2 + a^2(t) \left(dr^2 + \sinh^2 r d\Omega^2\right)$

open universe

initial conditions (at t=0)

$$\sigma(0) = \bar{\sigma}(0) \qquad \quad a(0) = 0$$

 evolution is same as the usual open universe

Multi-field tunneling with gravity

- Multi-field extension of Coleman-De Luccia instanton
 - instanton $\bar{\sigma}(t), \bar{\phi}(t), \bar{a}(t)$

instanton is a solution for these equations

$$\begin{split} & \mathsf{EOMs} \\ & \frac{\ddot{a}}{\ddot{a}} + \frac{1}{3m_{pl}^2} \left(\dot{\bar{\sigma}}^2 + \dot{\bar{\phi}}^2 + V(\bar{\sigma}, \bar{\phi}) \right) = 0 \\ & \ddot{\sigma} + 3 \frac{\dot{\bar{a}}}{\ddot{a}} \dot{\bar{\sigma}} - V_{\sigma}(\bar{\sigma}, \bar{\phi}) = 0 \\ & \ddot{\theta} + 3 \frac{\dot{\bar{a}}}{\ddot{a}} \dot{\bar{\phi}} - V_{\bar{\delta}}(\bar{\sigma}, \bar{\phi}) = 0 \end{split} \qquad \begin{aligned} & \dot{\bar{\sigma}}(0) = \bar{a}(t_{\mathrm{end}}) = 0 \\ & \dot{\bar{\sigma}}(0) = \dot{\bar{\sigma}}(t_{\mathrm{end}}) = 0 \\ & \dot{\bar{\phi}}(0) = \dot{\bar{\phi}}(t_{\mathrm{end}}) = 1 \end{aligned}$$

- decay rate

$$\frac{\text{(tuuneling probability)}}{\text{(unit volume)(unit time)}} = O\left(V(\sigma, \phi)\right) \times \exp\left(-S_E\left[\bar{\sigma}, \bar{\phi}, \bar{a}\right] + S_E\left[\sigma_F, \phi_F, a_F\right]\right)$$

initial conditions inside bubble

$$\sigma(0) = \bar{\sigma}(0)$$
 $\phi(0) = \bar{\phi}(0)$ $a(0) = 0$

evolve as an open Friedmann universe

We will

- 1. construct a multi-field instanton
- 2. develop the universe inside bubble

Quantum tunneling

$$\alpha = 0.1$$
 $\beta = 0.01$
 $\sigma_0 = 2m_{pl}$ $m_{\phi} = 10^{-6}m_{pl}$
 $M_V = 0.2m_{pl}$ $\phi_0 = 15m_{pl}$

-1.09e.09 -1.19e.09 -1.19e.09 -1.19e.09 -1.29e.09 -1.29e.09 -1.29e.09 -1.29e.09

 $T[m_i^2]$

solution for EOMs and boundary conditions

numerically obtained multi-field instanton

- inflaton ϕ moves but a little
- initial condition for a nucleated bubble $\sigma(0) = \bar{\sigma}(0)$ $\phi(0) = \bar{\phi}(0)$ a(0) = 0

Evolution after tunneling

$$\alpha = 0.1$$
 $\beta = 0.01$
 $\sigma_0 = 2m_{pl}$ $m_{\phi} = 10^{-6}m_{pl}$
 $M_V = 0.2m_{pl}$ $\phi_0 = 15m_{pl}$

· initial conditions

$$\sigma(0) = \bar{\sigma}(0)$$
 $\phi(0) = \bar{\phi}(0)$ $a(0) = 0$

e-folds

$$N = \ln{(a(t)/\underline{a_i})}$$
 scale factor at the beginning of inflation

starting from curvature dominant universe

Realization of open inflation scenario!!

Interaction effect on decay rate

decay rate and interaction effect

- Q. Does an interaction effect make decay rate larger, or smaller?
- potential

$$V\left(\sigma,\phi
ight) = V^{(0)}\left(\sigma
ight) + \underline{V_{\mathrm{int}}\left(\sigma,\phi
ight)} \qquad \left(V_{\mathrm{int}}\left(\sigma,\phi_{F}
ight) = 0
ight)$$
interaction part
$$\frac{\partial V_{\mathrm{int}}\left(\sigma,\phi_{F}
ight)/\partial\phi = 0}{\partial V_{\mathrm{int}}\left(\sigma,\phi_{F}
ight)/\partial\phi = 0}$$

decay rate

cay rate
$$\frac{\text{(tuuneling probability)}}{\text{(unit volume)(unit time)}} = O\left(V(\sigma, \phi)\right) \times \exp\left(-S_E\left[\bar{\sigma}, \bar{\phi}, \bar{a}\right] + S_E\left[\sigma_F, \phi_F, a_F\right]\right)$$

changing V_{int} with $V^{(0)}$ fixed \longrightarrow V_{int} dependence of decay rate

without

Decay rate dependence on interaction

$$V^{\left(0\right)}\left(\sigma\right)$$
: fixed

$$\begin{array}{c} \text{potential ansatz} \\ V^{(0)}\left(\sigma\right) \colon \text{fixed} \end{array} \quad \begin{array}{c} V_{\text{int}}(\sigma,\phi) = \begin{cases} \lambda(\phi-\phi_F) & \sigma \sim \sigma_T \\ \frac{m_{\phi F}^2}{2}(\phi-\phi_F)^2 & \sigma \sim \sigma_F \end{cases} \end{array}$$

indicator of decay rate

$$\begin{split} \tilde{B}\left(m_{\phi,F},\lambda\right) &= -\left(-S_{E}\left[\bar{\sigma},\bar{\phi},\bar{a}\right] + S_{E}\left[\sigma_{F},\phi_{F},a_{F}\right]\right)\big|_{m_{\phi,F},\lambda} \\ &+ \left.\left(-S_{E}\left[\bar{\sigma},\bar{\phi},\bar{a}\right] + S_{E}\left[\sigma_{F},\phi_{F},a_{F}\right]\right)\big|_{m_{\phi,F},\lambda=0} \end{split}$$

action without interaction effect (independent of m of F)

decay rate /

results

A. The interaction effect make decay rate larger!!

interpretation: tunneling to a lower energy state

Conclusions and discussions

Conclusions

- We studied about Multi-field open inflation, which is motivated by string landscape
- The Coleman De Luccia instanton method was extended to the multi-field case
- For a certain potential, a multi-field instanton can be obtained and open inflation is realized
- The effects of interaction make decay rate larger because of tunneling to a lower energy state

Discussions

- Initial state of the universe is different from Bunch-Davies vacuum because of tunneling
- Calculation of Non-Gaussianity from this effect and comparison with observation such as PLANCK is a future work
- Tunneling field experiences damped oscillation after tunneling
- Interaction with tunneling field may cause some features in inflaton power spectrum