AGNのX線光度の時間変動と ブラックホール質量の推定

京都大学宇宙物理学教室修士1回生

活動銀河核(AGN)

- X線で非常に明るい
- ・ 光度に時間変化が見られる
- 銀河中心ブラックホー ルが成長する段階
- 銀河とブラックホールの共進化を考える上でも重要

(Urry & Padovani 1995)

活動銀河核(AGN)

- X線で非常に明るい
- ・ 光度に時間変化が見 られる
- 銀河中心ブラックホー ルが成長する段階
- 銀河とブラックホールの共進化を考える上でも重要

(Urry & Padovani 1995)

ブラックホール質量

- AGNの基本的な物理量であり、エディントン比や質量降着率を求めるのに必要
- AGNの中心の物理や進化を知る上で重要
- その推定方法

BLRからの 輝線幅

→ BLRが見えない2型AGNでは使えない

母銀河のバルジ光度との関係(マゴリアン関係)

→ 母銀河が見えない遠方のAGNなどで使えない

X線の時間変動から求める方法

時間変動のタイムスケールと系の大きさ

(ブラックホール質量)の関係を用いる

X線の光度変動さえ観測できれば ブラックホール質量を求める事ができる!

2型AGN、遠方のAGNでも推定が可能

AGNのX線Light curve の例

Normalized Power Spectrum Density (NPSD)

ある値の時間変化において、どの周波数の変 動の寄与が大きいかが分かる

AGNのNPSDの例

(Markowitz et al. 2003)

Breakのタイムスケールを比較して相対的にMBHを推定できる

(Markowitz et al. 2003)

(Hayashida et al. 1998)

BreakタイムスケールとM_{BH}の相関

M_{BH}(M_☉)

My Work

- AGNは系が大きいため長周期まで調べる必要がある (Breakのタイムスケール~1週間)
- しかし、長期間にわたる連続的な観測はまだ少ない

全天X線監視装置MAXIによる観測データ を用いてM_{BH}を推定

MAXI (Monitor of All-sky X-ray Image)

- 国際宇宙ステーションの日本実験棟「きぼう」に 取り付けられた全天X線モニター装置
- 宇宙ステーションの周回を利用して常に全天を モニターしており、全天のAGNの長期にわたる ライトカーブが得られる

MAXIによる全天イメージ

🔘 : AGN

(RIKEN, JAXA, MAXI team) 13/16

Mrk421のライトカーブ(4-10keV)

縦軸:cts/s/cm²

14/16

Mrk421のNPSD(Preliminary)

Future Work

- 現在MAXIで受かっている50個程度のAGNについてもライトカーブを作成し、M_{BH}を求める
- もっと長期のデータを使いさらに長いタイムス ケールについて調査したい
- 大部分は既に他の方法からM_{BH}が推定されているため、過去の結果と比較してX線光度の時間変動を用いた方法の評価をする
- BreakのタイムスケールとM_{BH}の比例関係、 AGNの種類によってその関係がどのように変わ るのかということをよりはっきりさせたい