ガンマ線連星LS 5039における 軟X線源の効果

山口正輝 高原文郎 大阪大学 宇宙進化グループ

第41回天文天体物理若手夏の学校

OUTLINE

- Gamma-ray binary, LS5039
- II. Results of Yamaguchi & Takahara 2010
- **III.** Introduction of synchrotron cooling
- Nodel with a soft X-ray source
- v. Summary

Gamma-ray binaries

Gamma-rays vary with orbital period

Objects	Period	Scale	Consists of
LS 5039	3.9d	5x10^12cm	0 + ?? (BH or NS)
LSI+61° 303	26d	10^13cm	Be + ??
PSR B1259-63	3.4yr	10^14cm	Be + NS
HESS J0632+057	320d	10^14cm	Be + ??
1FGL J1018.6-5856	16d	10^13cm	0 + ??

Gamma-rays are detected as flares

Cyg X-1	5.6d	3x10^12cm	0 + BH
Cyg X-3	4.8hr	5x10^11cm	WR + ??(BH or NS)

Candidate:

AGL J2241+4454 (HD 215227(Be))

Orbital parameters of LS5039

× Compact star (CS) + Massive star (MS, 06.5) × Period : 3.9 days Separation at periastron... ~2Rstar at apastron...~4Rstar $(R_{star} \sim 10^{12} \text{ cm})$

Observations of LS 5039

F. Aharonian, et al., 2006, A&A, 460, 743 A. A. Abdo, et al., 2009, ApJL, 706, 56 T. Takahashi, et al., 2009, ApJ, 697, 592

superior inferior

Model (Yamaguchi & Takahara 2010)

- Constant and isotropic injection of electrons at CS (power-law distribution)
- - Electrons emit photons at the injection or creation sites
 - The uniform magnetic field

We calculate spectra and light curves by (1) the cascade process with Monte Carlo method (GeV to TeV) (2) the synchrotron emission using the $e \pm$ distribution for B = 0.1 G (X-ray)

(parameters : the inclination angle & the power-law index of injected electrons)

Electron distribution and anisotropic IC pectra

- KN effect flattens the electron distribution
- The electron number is larger at apastron due to suppression of IC cooling
- Anisotropic IC emission of headon collision is more intense since collision rate is higher
- Anisotropy is suppressed by KN effect at higher energy

Comparison with observations (spectra)

Comparison with observations (light curves)

Inclination angle: 30° power-law index: 2.5

TeV: roughly reproduced GeV: well reproduced X-ray: a phase difference

(numerical results are normalized with maxima of observation)

Modulation mechanism in TeV, GeV and X-ray

 TeV: absorption is dominant At supc, flux is smaller than infc by the large density of stellar radiation field

GeV: IC anisotropy is dominant At supc, flux is larger than supc by head-on collision of IC scattering

X-ray: e± number variation by IC cooling

At periastron, the e± number in steady state is smaller than apastron by IC cooling in the large density of stellar radiation field, so emissivity by synchrotron is smaller, therefore flux is smaller

Problems of this model

Shortage of X-ray flux

- X G is required for the reproduction of Suzaku data if synchrotron emission is responsible for X-ray
- × Higher energy electrons are affected by synchrotron cooling under 3 G \rightarrow include the synchrotron cooling

Excess of 10 GeV flux

 Assume that cutoff at a few GeV is due to yy absorption by higher energy photons (~ 100 eV)

Spectra including synchrotron cooling

- Suzaku data are well fitted
- Highest energy gamma-rays are not emitted
- This implies the necessity of 2 component model

Model with 100eV photons

Requirement for 100eV source

No influence on Suzaku data
 ⇒ $L_{100eV} \le 10^{34} \text{erg s}^{-1}$ × Optical depth $\tau > 1$ ⇒ $R_{100eV} \le 10^8 \text{ cm}$ (if thermal)

Electron injection

- ★ e ± are accelerated up to 1TeV and emit near 100 eV source where B=3G ($r_{gyro,max} \sim 10^9$ cm)
- * e \pm are accelerated from 1 to 30TeV and emit far from 100 eV source where B=0.1G ($r_{gyro,max} \sim L_{system}$)

we calculate cascade with 100eV photons near the source, and with stellar photons far from it

Results

 $i = 30^{\circ}, 1 \text{ GeV} \le E_{e, \text{inj}} \le 50 \text{ TeV}(\text{index} : 2.5)$

× GeV spectra match the Fermi data × But... × X-ray spectra terribly underestimate × TeV spectra underestimate × No orbital variation in GeV & X-ray band

Discussion

Underestimation at X-ray

★ Target photons are changed to 100eV photons, so photon density increases → IC cooling time becomes short → the number of e± decreases $U_{100eV}/U_{Ostar} \sim L_{100eV}/L_{Ostar} (R_{Ostar}/R_{100eV})^2 \sim 10^3$

No variation in GeV & X-ray band

- x Y&T 2010: e ± scattered off stellar photons → each flux modulates by the anisotropy of IC scattering
- ★ In this study, they scatter off isotropic photons → emerging photons with GeV & keV have isotropic distribution → No modulation in GeV & X-ray band

Summary

- For LS 5039, we calculate photon propagation including cascade process (without synchrotro cooling)
 - \rightarrow results imply the necessity of synchrotron cooling and show the difference of cutoff energy ~ GeV from Fermi obs.
- × So we introduce...
- × I. Synchrotron cooling
 - \rightarrow 2 component model required if X-ray is due to synchrotron process
- × II. 100eV photon source to reproduce 10GeV spetra

 → 10GeV spectra match Fermi obs but...
 X-ray flux is underestimated (by large photon density)
 X-ray & GeV have no variation (by isotropy of 100eV)

Prospect

- × With 100eV source, we introduce orbital variation of injection (as in Owocki et al. 2010, proceeding)
 - \rightarrow the problem is the deficiency of X-ray flux
 - \rightarrow IC scattering origin?
- Without 100eV source, we regard GeV cutoff as high energy cutoff of injected e±
 - \rightarrow the problem is the origin of TeV emission
 - \rightarrow the hadronic process? (e.g. p-p or p- γ)
 - or leptonic 2-compoment model?