ASTRO-H用多層膜スーパーミラーの最適化

名古屋大学大学院

理学研究科

素粒子宇宙物理学専攻

宇宙物理学研究室(Ux研)

修士 I年

ASTRO-H搭載用硬X線望遠鏡

10 keV 以上の硬 X 線領域において全反射の利用は困難 なため多層膜によるブラッグ反射を利用する

スパッタ法によるスーパーミラーの作成と測定

・ASTRO-H用スパッタリング装置を用いて成膜した

・高輝度放射光施設SPring-8で角度反射率測定を行った

ついて説明します。今回は ASTR パッタ現象の模式図です。加速された。上の写真 た粒子をスパッタ粒子といいます。この現象を利用して薄膜を形成する方法をスパッタリング

まとめ

・ASTRO-H用に低入射角側用の新しいスーパーミラーを設計

・入射角0.07°~0.10°のものを設計した

入射角	積層数	平均反射率
		(40keV~80keV)
0.07°	28→10	75%→79%
0.08°	28→I5	73%→76%
0.09°	28→21	71%→72%
0.10°	28→21	68%→68%

大幅に積層数を 減らすことができた

・実際に成膜し、SPring-8で測定

