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Overview
* The primordial non-Gaussianity (NG) affects the clustering of dark matter
halo through the scale-dependent bias.
* Recent results : Observations & Forecasts (1o error)

Obs. fy =53 +£25 & fy, =47+ 21: from NVSS & SDSS DR6 QSOs data (Xia et al. 2010)
For. Afy ~1-5 : cluster counts for DES-like survey (Cunha et al. 2010)

For. Afy, ~ few : CMB Bispectrum with ideal CM experiment
* CMB lensing is a powerful tool to explore the large scale structure, which
can get matter distribution without uncertainty of bias.

* Cross correlation between galaxy & CMB lensing can be break some
degeneracy of NG and bias.

1.Scale-dependent bias (palc et al. 2008, Slosar et al. 2008)
Deviations from Gaussian initial conditions are commonly parameterized
in terms of the dimensionless fy; parameter
Primordial non-Gaussianity (NG) of the local type
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o = ¢ + fNL(d) - <¢ >) (Komatsu & Spergel 2001)

The effect of the primordial NG of the local type is seen in the clustering
of halos through a scale-dependent bias

Galaxy power spectrum
P, (k) = bjP(k) — [by + Ab(k)]*P(k)
3(b0 - l)fNLQmH(%ﬁc
D(2)k*T (k)
* Primordial NG of the local type gives rise to a strong scale-dependent
bias on large scales (ock?), while the bias is roughly constant in the
Gaussian case.

b, :linear bias
P(k) : matter power spectrum

D(z) : growth factor
T(k) : transfer function

Ab(k) =

2.Galaxy-CMB lensing cross correlation signal
* The cross correlations between the CMB and the galaxy are well known
as providing additional information other than their respective
autocorrelation.
* We introduce the cross correlation between the CMB lensing and the
galaxy angular distribution to estimate errors in constraining cosmological
parameters.
cross correlation angular power spectrum
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* Lensing potential y can be
reconstructed from lensed T, E ,B.
(Hu & Okamoto 2002)
* Planck is not sensitive to CMB
lensing so much.

C\¥8 & fy; dependence
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* NG rises the power on large scale
* For the high-z and highly biased
objects, the effect of NG appears
more pronouncedly.

multipole moment : /

. . 3.Fisher Information Matrix (Tegmark et al. 1997)
* Fisher matrix
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Cov, : Covariance matrix (XX ,YY € 1T, EE, TE, yy, Ty, gg, Tg, yg)
To include yg, we calculate Cov, as
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* Marginalized 1o error : 6(61) = \/ﬁﬁ

4.Result: Signal to Noise
» Compare the S/N of some cross-correlations
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() = fw 2.1+ D e e N TN

Survey parameters

* f4y 1 sky coverage
for galaxy survey (C£8,C"e,C¥¢) - f, =0.10
for CMB (C/TTC/FE,C,TE,C ¥, C,™) - £, = 0.65

* N, = 109 : total number of galaxies

-noise : (S/N)

Planck
@=20. B=15.b,=20

* S/N does not increase in high-1 .

=> dominated by noise in small scale region
* For high-l,.,,., wg get larger S/N than Tg or Ty%
* yg will get larger S/N by future CMB survey
which is more sensitive to CMB lensing (e.g.
CMBPol).
* yg can be an important observation value !!
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5.Result: Parameter forecast (for Planck or CMBPol)
To see the contribution of yg for construing NG, compare the 3 cases.
e Casel : CTTCEE, C|TE, Cwv, C|Tv, C e, €&, &% (without C,T¢, C,v2)
* Case I : C\T-CEE, C\TE, Cvv, €@, C.ee, &%, Cve (without C,Te, C|Tv)
* Case [11: CTLCEE, C\TE, Cwv, C|Tv, C;g8, C\Te, Cve (full)
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by including yg. This aspect can NL * Planck (Thick line) NL

* CMBPol (Thin line)

be seen more clearly for CMBPol.

redshift dependence of Afy, « The error of fy, depends extensively on the
' T ey peak redshift of the galaxy distribution z, for
small z,.

=> the effect of NG become large with z,,.
{ e+ For large 7, the cange of Afy; is small.

=> the amplitude of the matter density is
small.
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peak redshift : z, or mean redshift : 7,

for HSC-like survey
Assuming finite observation time, survey
parameters are related as below.
- Survey parameters
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peak redshift : z, or mean redshift : |

for future wide field galaxy surveys
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(Yamamoto et al. 2007) 22

Future galaxy surveys will be able to observe
the wider field and more objects.

=> get larger fy,, & N, (ornp) .
» Some combinations of the survey E
parameters (fy,, n, & z,) achieve Afy; <5.
« This results are competitive to the CMB

Bispectrum or Trispectrum constraints. 0s ] s

mean redshift: 2,

6.Summary & Conclusion

* Cross correlation yg plays an important role to break some degeneracy
between fy; and b, and to constrain on f; more tightly.

* It is competitive constraint on f; CMB higher-order correlation
(Bispectrum, Trispectrum, etc...) with ideal CMB observation.

* The constraint through the scale-dependent bias is sensitive only to the local-
type NG. For the constraints on the other NG models, we must consider
higher-order correlation.




