

田中周太

大阪大学宇宙進化グループD2

共同研究者 高原文郎

2010, 8, 2-5, 第40回天文天体物理若手夏の学校 1

Introduction

Non-thermal spectrum (synchrotron & IC)
Magnetized cloud of non-thermal e+- plasma (& ions)

Jet – torus structure Powered by rotation powered pulsar

Expansion velocity VPWN << c. Some are found in SNR.</p> Confined by SNR

Flat radio spectrum & steep X-ray spectrum Broken power-law or two component injection

Problems

Pulsar parameters: spin energy & spin-down time

$$L_{spin}(t) = \dot{E}_0 (1 + \frac{t}{\tau_0})^{-\frac{n+1}{n-1}}$$

 ✓ Pair multiplicity к: pulsar electrodynamics Radio obs. of Crab Nebula (~10⁶ n்G)

 Broken power-law distribution: particle acceleration Standard shock acceleration (e. g. DSA) cannot create such distribution.

Study with a spectral evolution model of PWNe

Model: Set Up

Applicable for nearly spherical young PWNe with know pulsar spin-down luminosity.

✓Expanding uniform sphere (one zone)

✓Constant velocity expansion (< 10kyr) include effects from SNR (Esn, Mej, etc.) into VPWN.

✓ Injection from pulsar spin-down divided into non-thermal e+- & the B field

 $\dot{E}_{e^{\pm}} = (1 - \eta) L_{spin}(t)$

$$\dot{E}_B = \eta L_{spin}(t)$$

η parameter is close

to σ parameter.

broken power-law

Model: Evolutions

✓ Evolution of B field

$$\frac{4\pi}{3} (R_{PWN}(t))^3 \cdot \frac{(B(t))^2}{8\pi} = \int_0^t \eta L_{\rm spin}(t') dt'$$

✓ Evolution of particle distribution (radiative & adiabatic cooling)

$$\frac{\partial}{\partial t}N(\gamma,t) + \frac{\partial}{\partial \gamma}\left(\dot{\gamma}(\gamma,t)N(\gamma,t)\right) = Q_{\rm inj}(\gamma,t)$$

✓ Spectral evolution of the Crab Nebula | Tanaka & Takahara '10 ApJ

η=0.005 << 1, B(tage) ~ 85μG

Current flux decreasing rate

	radio[%/yr]	Opt.[%/yr]
Ours	-0.16	-0.24
Obs.	-0.17	-0.55

Pulsar Parameters Increase y-rays = injection wins! Decrease y-rays = cooling wins! 300yr 300yr G21.5-0.9 G54.1+0.3 1kvr 1kyr 3kvr 10kyr 3kyr /Fv[ergs/cm 10⁻¹² vF_v[ergs/am 10⁻¹² 10⁻¹³ 10⁻¹³ 10kyr 10⁻¹⁴ 10⁻¹⁴ 10⁻¹⁵ 10-15 10¹⁵ 10²⁰ 10²⁵ 10¹⁰ 10¹⁵ 10²⁰ 10¹⁰ 10²⁵ v[Hz]v[Hz] G0.9+0.1 G21.5-0.9 G54.1+0.3 Crab **Kes 75** Age[kyr] 0.95 1.0 2.0 0.7 2.3 $T_c = P/2\dot{P}[kyr]$ 3 0.73 1.24 4.85 3 TO[kyr] 0.7 3.2 0.6 3.9 1.5 Lo * To[1048ergs] 74 8.8 12 1.5 5.4

Diversity of pulsar parameters

Magnetization Parameter

All Young TeV PWNe need $10^{-4.3} < \eta < 10^{-1.8} << 1$ ($\sigma << 1$).

	Crab	G21.9-0.5	G0.9+0.1	Kes 75	G54.1+0.3
η[10 ⁻³]	5	15	3	0.05	0.3
Bnow[µB]	85	64	15	21	6.7

 $\eta << 1$ arises from flux ratio of IC to syn. $\frac{P_{\rm IC}(t)}{P_{\rm syn}(t)} \sim f_{\rm KN} \frac{U_{\rm ph}(t)}{U_{\rm B}(t)}$

Non TeV PWNe (like 3C58 & B0540-69.3) can be formed by $\eta \sim 1$ pulsar winds?

Pair Multiplicity

Typical `p1' and `p2' give, 1<p1<2<p2

$$\dot{E}_{e^{\pm}} = \int Q_{inj} \gamma mc^2 d\gamma \approx \dot{N}_{e^{\pm}} \gamma_b mc^2$$

$$\dot{N}_{e^{\pm}} = \int Q_{inj} d\gamma \approx \gamma_{\min} Q_{inj}(\gamma_{\min})$$

9

Μ[Crab	G21.9-0.5	G0.9+0.1	Kes 75	G54.1+0.3
γb [10 ⁵]	6	1	0.4	1	3
γmin [10 ²]	<1	<30	-	<50	<200
p1	1.5	1.0	-	1.6	1.2
к [10 ⁴]	<100	<12	8.3	<2.8	<2.3

How the break energy (γ_b) is determined?

Broken Power-law Injection

	Crab	G21.9-0.5	G0.9+0.1	Kes 75	G54.1+0.3
p1	1.5	1.0	-	1.6	1.2
p2	2.5	2.55	2.6	2.5	2.55

✓ p2 (high energy) ~2.5 for all one acceleration process?

✓ 1.0 < p1 < 1.6 or nothing for G0.9+0.1 Because p1 has variety, rela. Maxwellian + single power – law injection can reproduce radio spectrum of several PWNe.

$$\frac{\partial}{\partial t}N - \frac{\partial}{\partial \gamma}\frac{\gamma}{t}N = \delta(\gamma - \gamma_0) \quad \Longrightarrow \quad N \propto \gamma^{-1}$$

✓ Constant velocity expansion✓ Steady injection

One zone p spatial structure may be important. 10

Summary

- Pulsars have individual characters.
 - Spin energy, spin-down time etc.
- Young TeV PWNe have small η.
 - Is large η possible for non-TeV PWNe. (future work)
- Pair multiplicity $\kappa > 10^4$ (broken power-law injection)
 - What is the origin to determine yb?
 - **Broken power-law injection**
 - High energy : one process, low energy: adiabatic cooling?
 (however, simple adiabatic cooling is not applicable to the Crab)