9 つのスターバースト銀河からの

ガンマ線の観測と解析

梅田 佳宏

立命館大学物

理工学研究科 基礎理工学専攻

天体物理学研究室

スターバースト銀河は、星生成率が高い銀河である。したがって、超新星が生まれやす い環境にあると考えられる。それゆえ、宇宙線の加速に適した領域である。また、銀河の 中心領域のガスの密度が高いため、ガンマ線がより発生しやすい環境であると考えられる ので、今回スターバースト銀河のガンマ線の観測を行った。

先行研究として、まず、Blom et al.(1999)の研究では、10 個のスターバースト銀河の観 測が Compton 衛星の EGRET 観測器で行われた。その結果、有意なガンマ線信号を観測す ることはできなかった。 続いて、VERITAS, Niklas Karlsson, for the VERITAS collaborationCosmology and Extragalactic Astrophysics(2009)の研究によると、2008 年 から 2009 年にかけて、5 σ のレベルで、700GeV 以上の超高エネルギーのガンマ線が M82 から観測された。また、H.E.S.S., F. Acero et al. for The H.E.S.S. Collaboration High Energy Astrophysical Phenomena(2009)らによる研究では、NGC253の中心領域で、ガ ンマ線の放射が観測された。さらに、Abdo et al.(2009)による Fermi 衛星を用いた観測で は、スターバースト銀河の M82 と NGC253 から有意なガンマ線が観測された。

よって、本研究の目的は、スターバースト銀河が宇宙線加速の良い条件がそろっている と考えられるので、Fermi 衛星の向上した観測感度で、その他のスターバースト銀河の探 索を行った。

今回観測対象とした 9 つの銀河を、table 1 にまとめた。解析は、Fermi 衛星の LAT に よる観測データを Science Tools を用いて解析を行った。解析データは、エネルギー範囲が 100MeV — 300GeV、Event class は Diffuse class 、Zenith angle は 105°以下、 Background model は P6_V3_Diffuse response function を用いてマップを作成し、バック グラウンドとなる天体をモデル化し、解析を行った。今回の解析では、TS value の判断基 準を 25 以上とした。また、upper limit を有意でない天体に対し設定し、vF を計算して SED(spectra energy distribution)を作成し、様々な放射機構を仮定した理論モデルと比較 した。

解析結果をtable 2にまとめた。まず、TS value の値の評価については、M82とNGC253 は、それぞれ、74.25と55.31となっており、有意なガンマ線の信号を確認することができ、 これらの Flux を求めた。しかし、その他の7つの天体に関しては、25以上の値を確認す ることができなかったので、upper limit を設けた。また、これらの結果から、vFを計算 した。続いて、M82のSEDと理論的に予想されたSEDを比較したものがfigure1である。 青色のラインが今回 Fermi 衛星の値を用いてフィッティングしたラインである。その他の 3本のラインは、理論的な予想モデルである。三角のマークは、VERITAS による観測値で ある。VERITASの値とも、また理論モデルと矛盾なくフィッティングすることができたと 考えられる。また、figure 2は、NGC253のSEDと理論的に予測されたSEDである。こ ちらのほうも同様に、青色のラインがフィッティングしたラインで、その他の3本のラインが理論モデルである。四角のマークは、H.E.S.S.による観測値である。こちらは、理論モ デルとは、矛盾なくフィットしているが、H.E.S.S.の値と矛盾している。したがって、こち らは、バックグラウンドのモデルにまだ考慮が必要であると考えられる。また、ガンマ線 の発生のパラメータが何で決まっているのかを考える必要があるため、luminosity, Star formation rate, Supernova rate について相関をとった。それぞれの銀河の luminosity, Star formation rate, Supernova rate は、table 3 にまとめた。まず、luminosity と Star formation rate について相関をとった(figure 3)。ガンマ線の信号が有意である M82 と NGC253 につ いて近似線を引いた。この近似線より下にあるものは、IC10 の一つだけで、この銀河は luminosity と Star formation rate の観点から考えると受かってよいものだが、有意なガン マ線は観測できなかった。したがって、luminosity と Star formation rate だけがガンマ線 発生のパラメータになっているとは考えにくい。さらに、luminosity と Supernova rate の 相関を考えた(figure 4)。こちらも同様に、M82 と NGC253 に対して、近似線を描いた。 こちらは、近似線より下にあるものはなく、M31 は近似線上にあるがここからは考察する ことができなかった。さらに、この二つの相関に関しては、解析していく必要があると考 えられる。

今回の研究では、Fermi衛星のデータを9つの銀河について解析し、M82とNGC253からは有意なガンマ線を検出できたが、その他の天体からは有意なガンマ線信号を観測することはできなかった。また、M82とNGC253のSEDは、理論的予測値とほぼConsistentであった。これらのことより、スターバースト銀河のあるものはガンマ線の発生源であることが分かった。加えて、超新星とガンマ線放射の関係を見るため、Luminosity(の上限値)と supernova rate/star formation rate との相関を調べた。最後に、宇宙線加速の原因を明らかにするためにスターバースト銀河が良い研究材料となるのではないかと考える。

Acknowledgment

The authors thank the Yukawa Institute for Theoretical Physics at Kyoto University, where this work was initiated during the YITP-W-10-03 on "Summer School on Astronomy & Astrophysics 2010".

Galaxy	RA	DEC	Distance
	(deg)	(deg)	(Mpc)
M82	148.96	69.68	3.5
NGC253	11.88	-25.28	3.5
IC10	5.09	59.29	0.66
Haro11	9.22	-33.55	88
M31	10.68	41.26	0.78
NGC4038	180.46	-18.86	13
Arp 220	233.73	23.50	77
NGC7469	345.81	8.87	60
IC694	172.11	58.57	40

Table 2: 解析結果

Galaxies	TC 1	Flux	Index	upper limit	vF
	15 value	$({\rm MeV}^{-1}{\rm cm}^{-2}{\rm s}^{-1})$		$(\text{cm}^{-2}\text{s}^{-1})$	$(MeVcm^{-2}s^{-1})$
M82	74.25	$1.61 \pm 0.192 \times 10^{-10}$	-2.17 ± 0.265		1.61×10^{-6}
NGC253	55.31	$1.68 \pm 0.703 imes 10^{-10}$	-2.28 ± 0.162		1.68×10^{-6}
IC10	-0.019			2.17×10^{-9}	$<2.17 \times 10^{-7}$
Haro11	-0.013			$5.86 imes 10^{-9}$	$<5.86 \times 10^{-7}$
M31	18.48			2.77×10^{-8}	$<2.77 \times 10^{-6}$
NGC4038	0.065			2.53×10^{-8}	$<2.53 \times 10^{-6}$
Arp 220	2.46			1.28×10^{-8}	$<1.28 \times 10^{-6}$
NGC7469	-0.062			1.27×10^{-9}	$<1.27 \times 10^{-7}$

Table 3: luminosity, Star formation rate, Supernova rate

	Luminosities	Star formation rate	Supernova rate
Galaxies	$(erg s^{-1})$	$(M_{\odot} yr^{-1})$	(yr ⁻¹)
M82	$3.98{ imes}10^{40}$	2.2	0.2
NGC253	9.63×10^{40}	2.8	0.08
IC10	<2.03×10 ³⁸	0.04	
Haro11	$< 8.65 \times 10^{42}$	25	
M 31	<3.38×10 ³⁹	0.03	0.0125
NGC4038	$< 8.15 \times 10^{41}$	0.63	0.2
Arp220	$<1.45 \times 10^{43}$	200	2
NGC7469	$< 8.71 \times 10^{41}$	30	0.97
IC694	$< 7.87 \times 10^{42}$	120	0.65

Figure 1:M82の SED と理論的に予測された SED

Figure 2:NGC253 の SED と理論的に予測された SED

Figure 3:luminosity と star formation rate との相関

Figure 4:luminosity と supernova rate との相関

参考文献

- [1]A. A Abdo, et al. arXiv:0911,5327;ApJ Letters, submitted
- [2]F. Acero, et al. Science, **326** (2009) 1080
- [3]J. J. Blom, T. A. D. Paglione & Carrdmiñana. ApJ, 516 (1999) 744
- [4] NASA Extragalactic Database, http://nedwww.ipac.caltech.edu/
- [5] J. Rodríguez Zaurín et al. Monthly Notices of the Royal Astronomical Society, 384 (2008)875-885
- [6]A. A. Abdo, et al. ApJ Supplement, **183** (2009) 46
- [7] Yoel rephaeli, et al. Monthly Notices of the Royal Astronomical Society,401 (2010) 473-478
- [8] Todd A. Thompson et al. The Astrophysical Journal, 654 (2009) 219-225