夏の学校 全体企画ALMA 2010年8月3日(火)

大質量星が生まれる潜在能力を持っ た分子雲コアの探査: 銀河系内の大規模星団Westerlund2

大濱 晶生

名古屋大学 天体物理学研究室(Ae研) 学術振興特別研究員

古川 尚子, Joanne Dawson, 河村 晶子, 森部 那由田, 奥田 武志, 山本 宏昭(名大), 前澤 裕之(名大STE), 水野 範和(国立天文台), 大西 利和(大阪 府立大学) and 福井 康雄 (名大)

これまでの大質量星の理解と課題

理解

- ・ 寿命は低質量星(10⁹ yr)に比べると短い(10⁷ yr)
- ・
 ・
 賃量降着が大きい
- 単体では形成しない

課題

The Top 10 problem on Massive Stars

Cassio L. Barbosa & Donald Figer 2004

Larson 1989

- 分子雲の初期温度が誕生する星の質量を決定?
- ・ 質量の上限を決めるものは?
- 光解離領域内での分子・原子形成と散逸のメカニズム

南天Westerlund 2(Wd2)とは

Spitzer IRAC 3.6, 4.5, 5.8, 8.0 μm

NASA / JPL-Caltech / E. Churchwell (Univ. of Wisconsin)

・星の総質量: 4500 M_{sun} (Rauw et al. 2007) •年齡 :2-3 Myr (Piatti et al. 1998) •O型星 :12 (Rauw et al. 2007) •Wolf-Rayet 星(WRs):2 (Rauw et al. 2007) •距离:2.8 kpc (Ascenso et al. 2007) 8.3 ± 1.6 kpc (Rauw et al. 2007) 星雲RCW 49 •星雲は星団に付随 (Churchwell et al. 2004) •YSOs: 300個存在 (Whitney et al. 2004)

12CO(J=2-1)輝線の空間分布

Key

- 大規模星団の形成機構の理解
- 大質量星を形成する分子雲コアの探査
- 光解離領域内での分子雲の形成と散逸

方法

- 高励起CO輝線の観測し、赤外線データと比較
- LVG解析による温度と密度の推定
- 様々なライン観測による分布(CO, CI)

電離ガスと分子雲の分布:

Spitzer IRAC GLIMPSE 8.0 um image, Cont.: 12CO(J=2-1) NANTEN 2 90"

はじめに、赤外線と同じ分解能2"を取得、比較する

2分角における分子雲の温度分布

イメージ: 分子雲の温度 コントア:CO(2-1)の積分強度 赤い十字: Wd2

PDR内での分子雲の形成と散逸

CO・CI輝線の観測
 炭素の存在量

大質量星からの遠赤外線により、炭素原子CI輝線の強度が敏感に変化

ALMAによりCOとCI 赤外線衛星HerschelによりCII

モデルと観測との比較により、ガスの化学変化を理解

観測時間の見積もり

• 参考HP:

http://www.eso.org/sci/facilities/alma/observing/tools/etc/index.html

• 10分x 10分, dV ~ 0.6 km/s

合計 101 時間

Freq. (GHz)	Reso (")	Sensitivity (K)	Effective Bandwidth (MHz)	Sec/視野	視野	FOV (")	時間 (Hour)
CO(J=1-0) 115.271	2	1.0	0.22	112	544	55	17
CO(J=2-1) 230.538	2	0.5	0.46	29.5	2176	30	18
CO(J=3-2) 345.795	2	0.5	0.60	16.6	5224	18	24
CO(J=4-3) 461.0	2	0.5	0.84	14.5	5312	14	21
CI(3P2-3P1)	2	0.5	0.84	14.5	5312	14	21

まとめ

Early Scienceでさえ、

- CO(1-0, 2-1, 3-2, 4-3)とCI(3P2-3P1)輝線観測
- Spitzerのデータと比較するために分解能2"
- 観測領域;10分 x 10分
- 総合観測;101時間

サイエンス

- 大質量星を形成する分子雲コアの探査
- PDR内での分子雲の形成と散逸